Answer:
Step-by-step explanation:
24
Answer:
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
Step-by-step explanation:
Observe that in the single trial, we have (8 4) possibilities of choosing our set of balls. If we have chosen two white balls and two black balls, the probability of doing that is simply
p=(4 2)*(4 2)/(8 4)
This is well know Hyper geometric distribution. Now, define random variable X that marks the number of trials that have been needed to obtain the right combination (two white and two black balls). From the nature of the problem, observe that X has Geometric distribution with parameter p that has been calculated above. Hence
P(X = n) = (1— p)^n-1 *( p )
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
32x+64 = 160
32x = 96
x = 3
we know that
The measurement of <u>the external angle</u> is the semi-difference of the arcs it includes.
In this problem
![21\°=\frac{1}{2}[arc\ RU-arc\ SU]](https://tex.z-dn.net/?f=21%5C%C2%B0%3D%5Cfrac%7B1%7D%7B2%7D%5Barc%5C%20RU-arc%5C%20SU%5D)
Solve for the measure of arc SU
![42\°=[arc\ RU-arc\ SU]](https://tex.z-dn.net/?f=42%5C%C2%B0%3D%5Barc%5C%20RU-arc%5C%20SU%5D)


therefore
the answer is
The measure of the arc SU is 