answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
2 years ago
5

A physics book is moved once around the perimeter of a table of dimensions 1 m by 3 m. If the book ends up at its initial positi

on, what is the distance traveled
Physics
1 answer:
mamaluj [8]2 years ago
6 0

Answer: 8 m.

Explanation:

Use formula of perimeter of rectangle.

Perimeter = 2( l + b)

=2( 3 + 1 )

=8 m

You might be interested in
The gravitational force produce between any two object kept 2.5×10 to the power 4 km apart is 580N.At what distance should they
timofeeve [1]

Answer:

d = 3.54 x 10⁴ Km

Explanation:

Given,

The distance between the two objects, r = 2.5 x 10⁴  Km

The gravitational force between them, F = 580 N

The gravitational force between the two objects is given by the formula

                                         F = GMm/r² newton

When the gravitational force becomes half, then the distance between them becomes

Let us multiply the above equation by 1/2 on both sides

                                        ( 1/2) F = (1/2) GMm/r²

                                                   =  GMm/2r²

                                                   =  GMm/(√2r)²

Therefore, the distance becomes √2d, when the gravitational force between them becomes half

                                           d = √2r = √2 x 2.5 x 10⁴  Km

                                               = 3.54 x 10⁴  Km

Hence, the two objects should be kept at a distance, d = 3.54 x 10⁴  Km so that the gravitational force becomes half.

3 0
2 years ago
Your town is installing a fountain in the main square. If the water is to rise 26.0 m (85.3 feet) above the fountain, how much p
Brums [2.3K]

Answer:

P = 3.55 \times 10^5 Pa

Explanation:

As we know that water from the fountain will raise to maximum height

H = 26.0 m

now by energy conservation we can say that initial speed of the water just after it moves out will be

\frac{1}{2}mv^2 = mgH

v = \sqrt{2gH}

v = \sqrt{2(9.81)(26)}

v = 22.6 m/s

Now we can use Bernuolli's theorem to find the initial pressure inside the pipe

P = P_0 + \frac{1}{2}\rho v^2

P = 10^5 + \frac{1}{2}(1000)(22.6^2)

P = 3.55 \times 10^5 Pa

6 0
2 years ago
A 5kg bucket hangs from a ceiling on a rope. A student attaches a spring scale to the buckets handle and pulls horizontally on t
7nadin3 [17]
I don’t know what the angle is in your diagram so I used the angle from the vertical.

6 0
2 years ago
You are provided with three polarizers with filters making angles of (A) 90 ​∘ ​​ , (B) 180 ​∘ ​​ and (C) −45 ​∘ ​​ with respect
irinina [24]

Answer:

Order of maximum transmission of the polarizer is A, C and B.

Solution:

As per the question:

For the first polarizer, the angle is quite insignificant:

(A) 90^{\circ}:

The light intensity after passing through the first polarizer is I_{o} and this intensity does not depend on the angle of the polarizer.

Consider 90^{\circ} with the vertical, the intensity is given by:

I = I_{o}cos^{2}90^{\circ}

I = I_{o}cos(2(45^{\circ})) = I_{o}(\frac{1+cos90^{\circ})}{2} = \frac{I_{o}}{2}

(B) 180^{\circ}:

Suppose the second polarizer is  45^{\circ} with the vertical.

Now, intensity through the second polarizer:

I' = Icos^{2}(\theta_{2} - \theta_{1}) = \frac{I_{o}}{2}cos^{2}(- 45 - 90)

I' =  \frac{I_{o}}{2}cos^{2}135^{\circ} = \frac{I_{o}}{4}

Now, if we consider the second polarizer to be 180^{\circ},

I' = \frac{I_{o}}{2}cos^{2}180^{\circ} = \frac{I_{o}}{2}cos^{2}(180^{\circ} - 90^{\circ}) = 0

(C) - 45^{\circ}:

Now,

Intensity through the third polarizer, if it is 180^{\circ} with the vertical:

I' = Icos^{2}(\theta_{2} - \theta_{1}) = \frac{I_{o}}{2}cos^{2}(180 - (- 45))

I' = \frac{I_{o}}{8}

5 0
2 years ago
The Earth has mass ME and average radius RE. The Moon has mass MM and the average distance from the center of mass of the moon t
marusya05 [52]

Answer:

Moment of inertia of Earth about its own axis is given as

I = 9.7 \times 10^{37} kg m^2

Explanation:

Since Earth is considered as solid sphere

So we will have

I = \frac{2}{5}M_eR_e^2

so we will have

I = \frac{2}{5}(5.97 \times 10^{24})(6.371 \times 10^6)^2

so we have

I = 9.7 \times 10^{37} kg m^2

3 0
2 years ago
Other questions:
  • A toy car of mass 0.15kg accelerates from a speed of 10 cm/s to a speed of 15 cm/s. What is the impulse acting on the car?
    14·2 answers
  • B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find
    13·1 answer
  • A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
    6·1 answer
  • The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x
    12·1 answer
  • three point charges are positioned on the x-axis 64 uc at x=ocm , 80uc at x=25cm, and -160 uc at x=50 cm. what is the magnitude
    11·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • A 15.0-Ω resistor and a coil are connected in series with a 6.30-V battery with negligible internal resistance and a closed swit
    14·1 answer
  • You go to an amusement park with your friend Betty, who wants to ride the 80-m-diameter Ferris wheel. She starts the ride at the
    10·1 answer
  • Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli
    9·1 answer
  • An object moving at a velocity of 32m/s slows to a stop in 4 seconds. What was its acceleration?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!