Answer:
d = 3.54 x 10⁴ Km
Explanation:
Given,
The distance between the two objects, r = 2.5 x 10⁴ Km
The gravitational force between them, F = 580 N
The gravitational force between the two objects is given by the formula
F = GMm/r² newton
When the gravitational force becomes half, then the distance between them becomes
Let us multiply the above equation by 1/2 on both sides
( 1/2) F = (1/2) GMm/r²
= GMm/2r²
= GMm/(√2r)²
Therefore, the distance becomes √2d, when the gravitational force between them becomes half
d = √2r = √2 x 2.5 x 10⁴ Km
= 3.54 x 10⁴ Km
Hence, the two objects should be kept at a distance, d = 3.54 x 10⁴ Km so that the gravitational force becomes half.
Answer:

Explanation:
As we know that water from the fountain will raise to maximum height

now by energy conservation we can say that initial speed of the water just after it moves out will be




Now we can use Bernuolli's theorem to find the initial pressure inside the pipe



I don’t know what the angle is in your diagram so I used the angle from the vertical.
Answer:
Order of maximum transmission of the polarizer is A, C and B.
Solution:
As per the question:
For the first polarizer, the angle is quite insignificant:
(A)
:
The light intensity after passing through the first polarizer is
and this intensity does not depend on the angle of the polarizer.
Consider
with the vertical, the intensity is given by:

(B)
:
Suppose the second polarizer is
with the vertical.
Now, intensity through the second polarizer:


Now, if we consider the second polarizer to be
,

(C)
:
Now,
Intensity through the third polarizer, if it is
with the vertical:


Answer:
Moment of inertia of Earth about its own axis is given as

Explanation:
Since Earth is considered as solid sphere
So we will have

so we will have

so we have
