I assume the x-y axis are tilted such that the x-axis is parallel to the surface of the hill while the y-axis is perpendicular to it.
In this case, the x-component of the weight is given by:

where
m is the mass of the car
g is the acceleration of gravity

is the angle of the hill
Substituting numbers into the formula, we find
To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:



The angular displacement is given as the form:
In the equlibrium we have to
and in the given position we have to

Derived the expression we will have the equivalent to angular velocity

Replacing,

Finally

Therefore the maximum angular displacement is 9.848°
Answer:
The dust present in the clouds.
Explanation:
The complicated composition molecules that can be found in space are generally associated with clouds of dust. The significant amount of dust in these clouds provides protection not only for these molecules, but for any body that makes up or is associated with dust clouds.
It is exactly this dust that protects the molecules against the action of ultraviolet rays.
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.