Answer:

Explanation:
Given:
<u>the thermal resistance in the form of </u>


where:
are the thickness of the respective bricks
are the respective coefficient of conductivity
temperature inside the house, 
temperature outside the house, 
area of the wall, 
Since the bricks and insulation are used to construct a wall then they must be used in series for better shielding.
<u>Using Fourier's law:</u>


in series the resistances get add up



Answer:
1.6 secs
Explanation:
In a circus act, an acrobat upwards from the surface of a trampoline
At that same moment another acrobat perched 9.0m above him
A ball is released from rest
While still in motion the acrobat catches the ball
He left the ball with a trampoline of 5.6m/s
Since the ball is falling downwards from a distance then acceleration will be negative
a= -9.8
s= d
s= 1/2at^2
= 1/2 × (-9.8)t^2
= 0.5× (-9.8)t^2
d = -4.9t^2
Therefore the time the acrobat stays in the air before catching the ball can be calculated as follows
9 - 4.9t^2= 5.6t + 1/2(-9.8)t^2
9 - 4.9t^2= 5.6t + (-4.9)t^2
9 - 4.9t^2= 5.6t - 4.9t^2
9= 5.6t
t= 9/5.6
t= 1.6 secs
Answer:
Water flowing rate= (300000kg/s) = (300000l/s)
Explanation:
First with the section of the channel, the depth of the water and the speed of the fluid we can determine the volume of fluid that circulates per second through the channel:
Volume per time= 15m × 8m × (2.5m/s)= 300 m³/s
With this volume of circulating fluid per second elapsed, we multiply it by the density of the water to determine the kilograms or liters of water that circulate through the channel per second elapsed:
Water flowing rate= (300m³/s) × (1000kg/m³)= (300000kg/s) = (300000l/s)
Taking into account that 1kg of water is approximately equal to 1 liter of water.
Answer:
2046.37 kPa
Explanation:
Given:
Number of moles, n = 125
Temperature, T = 20° C = 20 + 273 = 293 K
Radius of the cylinder, r = 17 cm = 0.17 m
Height of the cylinder, h = 1.64 m
thus,
volume of the cylinder, V = πr²h
= π × 0.17² × 1.64
= 0.148 m³
Now,
From the ideal gas law
we have
PV = nRT
here,
P is the pressure
R is the ideal gas constant = 8.314 J / mol. K
thus,
P × 0.148 = 125 × 8.314 × 293
or
P × 0.148 = 304500.25
or
P = 2046372.64 Pa = 2046.37 kPa
Sonography is most likely because it has good resolution without radiation.