Answer:
dont you have to times it
Explanation:
b) intervalul de timp t3 in care prin fata sa trece vagonul urmator
Sper că am ajutat!
Summary:
a= 12.0 m/(s^2)
v= 100m/s
t1= 2.0s => s1=?
t2=5.0s => s2=?
t3=10.0s => s3=?
——————
Solution:
• when t1=2.0 s, I have gone:
S1= v*t1 + 1/2*a*(t1^2)
=100.0 *2 + 1/2*12.0*(2.0^2)
=224 (m)
• when t2=5.0s, I have gone
S2=v*t2+ 1/2*a*(t2^2)
= 100*5.0+ 1/2*12.0*(5.0^2)
=650 (m)
•when t3= 10.0s, I have gone:
S3=v*t3+ 1/2*a*(t3^2)
=100*10.0+ 1/2*12*(10.0^2)
=1600 (m)
There are huge losses in the transmission, production and usage of electricity and the reduction of these losses in order to save electricity is called as conservation of energy.
As per the statistics, there is loss of nearly 4% while the transmission of electricity. Like wise during production also, lot of electricity get wasted due to the inefficient material used. None of the production material nor the equipment used have 100% efficiency and thus there is always a possibility of energy wastage.
When it is said that the energy is wasted , it simply means that the energy production which should have been 100% as per calculation is not completely derived from the source due to the inefficient conversion process. For example, a turbine while rotating must convert 100 % of the water energy or water falling on it into electrical energy but the turbine is not able to do so as some of the water is lost or its energy is lost before conversion while going through the mechanical process.
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of

