Answer : The energy released is -3319.7 KJ.
Solution : Given,
Mass of methane = 59.7 g
Molar mass of methane = 16 g/mole

The value of
is in negative that means the energy is releasing.
First we have to calculate the moles of methane.
Moles of methane = 
Now we have to calculate the amount of energy released.
The given reaction is,

From the reaction, we conclude that
1 mole of methane releases -890 KJ/mole of energy
3.73 moles of methane releases
of energy
Therefore, the energy released is -3319.7 KJ.
Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Reactants would be the missing word in the sentence because they make up the products in a chemical reaction
Specific heat means the amount heat needed when unit mass of a substrate increase one degree of temperature. So the specific heat = the heat absorbed/(the mass of the substrate * change in temperature) = 264.4/(16*35)=0.472 J/(g*℃)
From the question you will find that:
one capsule of tamiflu is obtained from 2.6 g of star anise.
1 capsule = 2.6 g tamiflu
? capsules = 155 g tamiflu
by cross multiplication =

= 59 capsules