answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
2 years ago
14

A 100 kg cart goes around the inside of a vertical loop of a roller coaster. The radius of the loop is 3 m and the cart moves at

a speed of 6 m/s at the top. The force exerted by the track on the cart at the top of the loop is ________.
Physics
1 answer:
Sphinxa [80]2 years ago
8 0

Answer:

200 N

Explanation:

You might be interested in
The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
tatiyna

Answer:

Explanation:

Given

B_z=(2.4\mu T)\sin (1.05\times 10^7x-\omega t)

Em wave is in the form of

B=B_0\sin (kx-\omega t)

where \omega =frequency\ of\ oscillation

k=wave\ constant

B_0=Maximum\ value\ of\ Magnetic\ Field

Wave constant for EM wave k is

k=1.05\times 10^7 m^{-1}

Wavelength of wave \lambda =\frac{2\pi }{k}

\lambda =\frac{2\pi }{1.05\times 10^7}

\lambda =5.98\times 10^{-7} m

7 0
2 years ago
Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.75 A out of the jun
AlexFokin [52]

Answer:

number of electrons = 2.18*10^18 e

Explanation:

In order to calculate the number of electrons that move trough the second wire, you take into account one of the Kirchoff's laws. All the current that goes inside the junction, has to go out the junction.

Then, if you assume that the current of the wire 1 and 3 go inside the junction, then, all this current have to go out trough the second junction:

i_1+i_3=i_2                 (1)

i1 = 0.40 A

i2 = 0.75 A

you solve the equation i3 from the equation (1):

i_3=i_2-i_1=0.75A-0.40A=0.35A

Next, you take into account that 1A = 1C/s = 6.24*10^18

Then, you have:

0.35A=0.35\frac{C}{s}=0.35*\frac{6.24*10^{18}e}{s}=2.18*10^{18}\frac{e}{s}

The number of electrons that trough the wire 3 is 2.18*10^18 e/s

3 0
2 years ago
Two parallel co-axial disks are floating in deep space (far from sun and planets). Each disk is 1 meter in diameter and the disk
HACTEHA [7]

Answer:

T₂ = 5646 K

Explanation:

Let's start by finding the power received by the first disc, for this we use Stefan's law

          P = σ. A e T⁴

Where next is the Stefam-Bolztmann constant with value 5,670 10-8 W / m² K⁴, A is the area of ​​the disk, T the absolute temperature and e the emissivity that for a black body is  1

The intensity is defined as the amount of radiation that arrives per unit area. For this we assume that the radiation expands uniformly in all directions, the intensity is

           I = P / A

Writing this expression for both discs

          I₁ A₁ = I₂ A₂

          I₂ = I₁ A₁ / A₂

The area of ​​a sphere is

          A = 4π r²

           I₂ = I₁ (r₁ / r₂)²

          r₂ = r₁ ± 5

          I₁ = I₂ ( (r₁ ± 5)/r₁)²

.

        Let's write the Stefan equation

         P / A = σ e T⁴

          I = σ e T⁴

This is the intensity that affects the disk, substitute in the intensity equation

         σ e₁ T₁⁴ = σ e₂ T₂⁴ (r₂ / r₁)²

The first disc indicates that it is a black body whereby e₁ = 1, the second disc, as it is painted white, the emissivity is less than 1, the emissivity values ​​of the white paint change between 0.90 and 0.95, for this calculation let's use 0.90 matt white

        e₁ T₁⁴ = T₂⁴   (r1 + 5)²/r₁²

       T₁ = T₂  {(e₂/e₁)}^{1/4}  √(1 ± 1/ r₁)  

If we assume that r₁ is large, which is possible since the disks are in deep space, we can expand the last term

           (1 ±x) n = 1 ± n x

Where x = 5 / r₁ << 1

We replace

          T₁ = T₂ {(e₂/e₁)}^{1/4}  (1 ± ½   5/r1)

           T₁ = T₂ {(e₂)}^{1/4}   (1 ± 5/2 1/r1)

If the discs are far from the star, they indicate that they are in deep space, the distance r₁ from being grade by which we can approximate; this is a very strong approach

              T₁ = T₂  {(e₂)}^{1/4} ¼

              T<u>₁</u> = T₂  0.90.9^{1/4}

               5500 = T₂  0.974

               T₂ = 5646 K

3 0
2 years ago
A cannon Is fired from the edge of a small clip the height of the clear is 80.0 at the cannonball inspired with a perfectly hori
Nutka1998 [239]

Answer:

The cannonball fly horizontally before it strikes the ground, S = 323.25 m

Explanation:

Given data,

The height of the cliff, h = 80 m

The horizontal velocity of the cannonball, Vₓ = 80 m/s

The range of the cannon ball with initial vertical velocity is zero is given by the formula,

                           S=\frac{V_{x}\sqrt{2gh}}{g}

                           S=\frac{80\sqrt{2\times9.8\times80}}{9.8}

                           S = 323.25 m

Hence, the cannonball fly horizontally before it strikes the ground, S = 323.25 m

7 0
2 years ago
Read 2 more answers
When listening to tuning forks of frequency 256 Hz and 260 Hz, one hears the following number of beats per second. (A) 0 (B) 2 (
Degger [83]

Answer:

(C) 4 beats per second.

Explanation:

As we know that the no of beats can be calculated as.

No. of beats is equal to difference in the tuning forks frequencies.

So,

n= \nu _{1}- \nu _{2}.

Substitute the values of frequencies of 2 tuning forks in the above equation.

n=(260 Hz-256 Hz)\\n=4

Therefore the number of beats per second will be hear by the observer is 4 beats per second.

3 0
2 years ago
Other questions:
  • Explain why the extrapolated temperature is used to determine the maximun temperature of the mixture rather than the highest rec
    10·2 answers
  • 64) Compare skeletal, smooth, and cardiac muscles as to their body location, microscopic anatomy, regulation of contraction, spe
    5·1 answer
  • A hockey puck is pushed by a stick with a force of 750 newtons. The puck travels 2.0 meters in 0.30 seconds. How powerful is the
    12·1 answer
  • An athlete leaves one end of a pool of length l at t = 0 and arrives at the other end at time t1. she swims back and arrives at
    10·1 answer
  • A motorist inflates the tires of her car to a pressure of 180 kPa on a day when the temperature is -8.0° C. When she arrives at
    9·1 answer
  • A nonuniform, 80.0-g, meterstick balances when the support is placed at the 51.0-cm mark. At what location on the meterstick sho
    6·1 answer
  • 1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r
    9·1 answer
  • What is the kinetic energy of a soccer ball which has a mass of 0.8 kg and is kicked at a velocity of 10 m/s
    8·1 answer
  • Hoosier Manufacturing operates a production shop that is designed to have the lowest unit production cost at an output rate of 1
    9·1 answer
  • A piece of wood that floats on water has a mass of 0.0175 kg. A lead weight is tied to the wood, and the apparent mass with the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!