Answer:
H₂Lv
Explanation:
Lv is at group 6 on the periodic table, so it has 6 valence electrons, likely oxygen. Thus, to be stable, it needs to gain 2 electrons. Hydrogen has 1 electron in its valence shell, so H₂ can share 2 electrons with Lv, and because of that, the product would be:
H₂Lv.
Answer:
The answer to your question is Molarity = 0.6158, I got the same answer as you.
Explanation:
Data
Molarity = ?
Mass of KMnO₄ = 36.5 g
Total volume = 375 ml
Process
1.- Calculate the Molar mass of KMnO₄
KMnO₄ = (1 x 39.10) + (54.94 x 1) + (16 x 4)
= 39.10 + 54.94 + 64
= 158.04 g
2.- Calculate the moles of KMnO₄
158.04 g of KMnO₄ ------------------- 1 mol
36.5 g of KMnO₄ --------------------- x
x = (36.5 x 1) / 158.04
x = 0.231 mol
3.- Convert the volume to liters
1000 ml -------------------- 1 L
375 ml --------------------- x
x = (375 x 1)/1000
x = 0.375 L
4.- Calculate the Molarity
Molarity = moles / volume
-Substitution
Molarity = 0.231 moles / 0.375 L
Result
Molarity = 0.6158
Answer: 65.7 grams
Explanation:
1) ratio
Since 1 mole of CaF2 contains 1 mol of F2, the ratio is:
1 mol CaF2 : 1 mol F2
2) So, to produce 8.41 * 10^ -1` mol of F2 you need the same number of moles of CaF2.
3) use the formula:
mass in grams = molar mass * number of moles
molar mass of CaF2 = 40.1 g/mol + 2 * 19.0 g/mol = 78.1 g/mol
mass in grams = 78.1 g/mol * 8.41 * 10^ -1 mol = 65.7 grams
Answer:
The answer is

Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
actual mass = 6.25 g
error = 6.25 - 6 = 0.25
So we have

We have the final answer as
<h3>4 %</h3>
Hope this helps you
The answer is 3.39 mol.
<span>Avogadro's number is the number of molecules in 1 mol of substance.
</span><span>6.02 × 10²³ molecules per 1 mol.
</span>2.04 × 10²⁴<span> molecules per x.
</span>6.02 × 10²³ molecules : 1 mol = 2.04 × 10²⁴ molecules : x
x = 2.04 × 10²⁴ molecules * 1 mol : 6.02 × 10²³ molecules
x = 2.04/ 6.02 × 10²⁴⁻²³ mol
x = 0.339 × 10 mol
<span>x = 3.39 mol
</span>