The acceleration is given as:
a = g sin(30°) where g is the gravitational acceleration
For g = 10 m/s^2, we get
a = 10 sin(30°) = 10 * 1/2 = 5 m/s^2
Answer:
35 J
Explanation:
The man is holding the box: this means that he is applying a force vertically upward, to balance the weight of the box (which pushes downward).
Therefore, we can ignore the horizontal displacement of the man, because the force applied (vertically upward) is perpendicular to that displacement (horizontal), so the work done for that is zero.
So, only the vertical motion contributes to the work. The work done by the man is equal to the gain in gravitational potential energy of the box, so:

where
is the weight of the box
is the vertical displacement
Substituting, we find

Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²
Answer:
The water will flow at a speed of 3,884 m/s
Explanation:
Torricelli's equation
v = 
*v = liquid velocity at the exit of the hole
g = gravity acceleration
h = distance from the surface of the liquid to the center of the hole.
v =
= 3,884 m/s
Answer:
Time taken by the leaf to displace by 1.0 m distance is
seconds
Explanation:
As we know that initial velocity of the leaf is given as

now the acceleration upwards for the leaf is

The displacement of leaf in upward direction is
d = 1 m
so now we have


seconds