answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
2 years ago
8

A sound wave propagates through a region filled with an ideal gas at constant temperature T. It approaches an acoustically perme

able but thermally insulating membrane such that the angle between the wave and the plane of the membrane is 30 degrees. On the other side of the membrane is the same gas at a different temperature T. What is the minimum value of T/T such that no sound passes across the barrier? (You may find it useful to know that the speed of sound in an ideal gas is proportional to VT.) a.1 b.1/2 c.3/4 d.4/3. e.2.

Physics
1 answer:
nataly862011 [7]2 years ago
5 0

Answer:

The answer is <em>e.2</em>

Explanation:

We should make use of Snell's refractive law. The arriving wave has a certain velocity at T in a medium, then instantly it reaches a medium (same composition) at T' where velocity would either decrease or increase.

When the incidence angle is 30 °, and we want to make the refraction angle 90 ° such that no sound passes through the barrier (this would be named total internal refraction), so we want the second medium to be "faster" than in the first.

<em>The steps are in the image attached:</em>

You might be interested in
A strip 1.2 mm wide is moving at a speed of 25 cm/s through a uniform magnetic field of 5.6 t. what is the maximum hall voltage
Alex787 [66]
The equation for Hall voltage Vh is:

Vh=v*B*w, where v is the velocity of the strip, B is the magnitude of the magnetic field, and w is the width of the strip. 

v=25 cm/s = 0.25 m/s
B=5.6 T
w= 1.2 mm = 0.0012 m

We input the numbers into the equation and get:

Vh= 0.25*5.6*0.0012 = 0.00168 V

The maximum Hall voltage is Vh= 0.00168 V.
4 0
2 years ago
Pions have a half-life of 1.8 x 10^-8 s. A pion beam leaves an accelerator at a speed of 0.8c. What is the expected distance ove
Nuetrik [128]

Answer:

the expected distance is 4.32 m

Explanation:

given data

half life time = 1.8 × 10^{-8} s

speed = 0.8 c = 0.8 × 3 × 10^{8}

to find out

expected distance over

solution

we know c is speed of light in air is 3 × 10^{8} m/s

we calculate expected distance by given formula that is

expected distance = half life time × speed   .........1

put here all these value

expected distance = half life time × speed

expected distance = 1.8 × 10^{-8} ×  0.8 × 3 × 10^{8}

expected distance = 4.32

so the expected distance is 4.32 m

5 0
2 years ago
Can light cause the rubber to become solid? Why or why not? Does it matter what type of light she shines on the rubber?
ELEN [110]

Answer:

Yes, ultraviolet light can turn a rubber into solid due to prolong exposure.

Explanation:

A rubber is a material with an elastic property, causing it to be deform by an external force but takes its shape when the force is removed. Light is an electromagnetic wave which causes the sensation of vision. It transfers energy to a medium during propagation through the medium.

Generally, most light do not cause hardness of a rubber. But an ultraviolet light can cause rubber to become solid over a period of time. This is possible if there is a prolong exposure of the rubber, and because of the evaporation of volatiles in the polymer material. Ultraviolet light are known to cause a rubber to become solid.

8 0
2 years ago
A certain alarm clock ticks four times each second, with each tick representing half a period. The balance wheel consists of a t
Semenov [28]

Answer:

a. I=2.77x10^{-8} kg*m^2

b. K=4.37 x10^{-6} N*m

Explanation:

The inertia can be find using

a.

I = m*r^2

m = 0.95 g * \frac{1 kg}{1000g}=9.5x10^{-4} kg

r=0.54 cm * \frac{1m}{100cm} =5.4x10^{-3}m

I = 9.5x10^{-4}kg*(5.4x10^{-3}m)^2

I=2.77x10^{-8} kg*m^2

now to find the torsion constant can use knowing the period of the balance

b.

T=0.5 s

T=2\pi *\sqrt{\frac{I}{K}}

Solve to K'

K = \frac{4\pi^2* I}{T^2}=\frac{4\pi^2*2.7702 kg*m^2}{(0.5s)^2}

K=4.37 x10^{-6} N*m

3 0
2 years ago
A sled is moving down a steep hill. The mass of the sled is 50 kg and the net force acting on it is 20 N. What must be done to f
Rashid [163]
I believe the answer is #4. u can always ask google if u believe that's the wrong answer :)
4 0
2 years ago
Read 2 more answers
Other questions:
  • Daniel is 50.0 meters away from a building. He observes that his line-of-sight to the tip of the building makes an angle of 63.0
    14·1 answer
  • Suppose that you purchased a water bed with the dimensions 2.55 m à 2.53 dm à 245 cm. what mass of water does this bed contain
    13·1 answer
  • What mass of water must evaporate from the skin of a 70.0 kg man to cool his body 1.00 ∘C? The heat of vaporization of water at
    9·1 answer
  • Which of the following is NOT a good way to reduce fuel consumption?
    15·2 answers
  • An object executes simple harmonic motion with an amplitude A. (Use any variable or symbol stated above as necessary.) (a) At wh
    9·1 answer
  • Gamma rays may be used to kill pathogens in ground beef. One irradiation facility uses a 60Co source that has an activity of 1.0
    6·1 answer
  • : The truck is to be towed using two ropes. Determine the magnitudes of forces FA and FB acting on each rope in order to develop
    11·1 answer
  • What is the threshold frequency for sodium metal if a photon with frequency 6.66 × 1014 s−1 ejects a photon with 7.74 × 10−20 J
    9·1 answer
  • A 9.0-V battery moves 20 mC of charge through a circuit running from its positive terminal to its negative terminal. How much en
    7·1 answer
  • Is the statement "An object always moves in the direction of the net force acting on it" true or false
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!