Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Explanation:
It is given that,
Mass of the ball, m = 1 lb
Length of the string, l = r = 2 ft
Speed of motion, v = 10 ft/s
(a) The net tension in the string when the ball is at the top of the circle is given by :



F = 18 N
(b) The net tension in the string when the ball is at the bottom of the circle is given by :



F = 82 N
(c) Let h is the height where the ball at certain time from the top. So,


Since, 

Hence, this is the required solution.
When wool is rubbed with a balloon, the wool is left with a positive charge as electrons have travelled from the wool to the balloon which means the balloon now has a negative charge.
Now that the balloon has a negative charge, you need to know:
The tissue paper originally contains electrons and protons
The fact that the balloon has a negative charge, it will ATTRACT protons because protons are POSITIVE and electrons are NEGATIVE.
So once they are attracted, they will move closer to one another.
Answer:
The car strikes the tree with a final speed of 4.165 m/s
The acceleration need to be of -5.19 m/seg2 to avoid collision by 0.5m
Explanation:
First we need to calculate the initial speed 
Once we have the initial speed, we can isolate the final speed from following equation:
Then we can calculate the aceleration where the car stops 0.5 m before striking the tree.
To do that, we replace 62 m in the first formula, as follows:

Answer:
JRJJEJERJRJERERJREREJERJJERJERTJE
ExpJERlanation:
SDSHERHJRESHERDHEDGERJEJERJERJERRJERSH