answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
2 years ago
11

A ball is launched with initial speed v from ground level up a frictionless slope (This means the ball slides up the slope witho

ut rolling). The slope makes an angle θ with the horizontal. Using conservation of energy, find the maximum vertical height hmax to which the ball will climb.
Physics
1 answer:
amid [387]2 years ago
4 0

Answer:

hmax = 1/2 · v²/g

Explanation:

Hi there!

Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.

KE = PE

Where KE is the initial kinetic energy and PE is the final potential energy.

The kinetic energy of the ball is calculated as follows:

KE = 1/2 · m · v²

Where:

m = mass of the ball

v = velocity.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the ball.

g = acceleration due to gravity (known value: 9.81 m/s²).

h = height.

At  the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:

PE = KE

m · g · hmax = 1/2 · m · v²

Solving  for hmax:

hmax = 1/2 · v² / g

You might be interested in
Alyssa is carrying a water balloon while running down a field at a speed of 14 m/s. She tosses the water balloon forward toward
Luda [366]
From Alyssa's point of view, the water balloon is at first at rest and then gets thrown with a velocity of 23m/s. Therefore the balloon will have a speed of 23m/s for Alyssa.

At the same time, Naya is watching, and she sees the balloon at the beginning moving at a speed of 14m/s along with Alyssa, and then pushed forward of other 23m/s. Therefore, from her point of view, the balloon will have a speed of 14+23 = 37m/s.

Hence, the correct answer is <span>D) The speed of the balloon is 23 m/s for Alyssa and 37 m/s for Naya. </span>
4 0
2 years ago
Read 2 more answers
Consider a boat heading due east at 15 miles/hour. The water's current is moving at 7.1 miles/hour at 45º south of east. Drag ve
givi [52]

If a boat is going East at 15mph and there is a water current going southeast at 45° then the boat is being drifted southward.  So since the current is going at an angle then it has a x and y component.  So Rx refers to the x-component force of the current and Ry refers to the y-component of the current, and |R| refers to the magnitude of these forces.

7 0
2 years ago
Read 2 more answers
A group of science and engineering students embarks on a quest to make an electrostatic projectile launcher. For their first tri
vekshin1

Electric charge on the plastic cube: 1.3\cdot 10^{-7}C

Explanation:

The electric potential around a charged sphere (such as the Van der Graaf) generator is given by

V(r)=\frac{kQ}{r}

where

k is the Coulomb's constant

Q is the charge on the sphere

r is the distance from the centre of the sphere

Here we have:

V = 200,000 V on the surface of the sphere, so at r = 12.0 cm

We need to find the voltage V' at 2.0 cm from the edge of the sphere, so at

r' = 12.0 + 2.0 = 14.0 cm

Since the voltage is inversely proportional to r, we can use:

Vr=V'r'\\V'=\frac{Vr}{r'}=\frac{(200,000)(12.0)}{14.0}=171,429 V

This is the potential at the location of the plastic cube.

Now we can use the law of conservation of energy, which states that the initial electric potential energy of the cube is totally converted into kinetic energy when the plastic cube is at infinite distance from the generator. So we can write:

qV' = \frac{1}{2}mv^2

where:

q is the charge on the plastic cube

V' is the potential at the location of the cube

m = 5.0 g = 0.005 kg is the mass of the cube

v = 3.0 m/s is the final speed of the cube

Solving for q, we find the charge on the cube:

q=\frac{mv^2}{2V'}=\frac{(0.005)(3.0)^2}{2(171,429)}=1.3\cdot 10^{-7}C

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
2 years ago
Which of the following forms of radiation can penetrate up to a 2-cm layer of skin tissue?
Dmitry_Shevchenko [17]

Answer:

d). X-rays

Explanation:

X -rays are also called photons. They are a packet of electro magnetic radiation. X rays originate from the shell of the electron.  X rays are highly penetrating, and have a shorter wavelength than alpha particles and the beta particles. They are similar to the gamma rays which are also has a high penetrating power and easily pass through the human body.

 Thus X rays can penetrate a skin tissue upto 2 cm thickness.

4 0
2 years ago
Read 2 more answers
In the middle of the night you are standing a horizontal distance of 14.0 m from the high fence that surrounds the estate of you
olchik [2.2K]

PART A)

horizontal distance that will be moved = 14 m

Height of the fence = 5.0 m

height from which it is thrown = 1.60 m

angle of projection = 54 degree

So here we can say that stone will travel vertically up by distance

\Delta y = 5 - 1.6 = 3.40 m

now we will have displacement in horizontal direction

\Delta x = 14 m

now we know that

v_x = vcos54

v_y = vsin54

now we will have

\Delta x = v_x t

14 = (vcos54)t

also for y direction

\Delta y = v_y t + \frac{1}{2}at^2

3.40 = (vsin54)t - \frac{1}{2}(9.8) t^2

now from the two equations we will have

3.40 = (vsin54)(\frac{14}{vcos54}) - 4.9 t^2

3.40 = 14 tan54 - 4.9 t^2

3.40 = 19.3 - 4.9 t^2

t = 1.8 s

now from above equations

14 = vcos54 (1.8)

v = 13.2 m/s

So the minimum speed will be 13.2 m/s

Part B)

Total time of the motion after which it will land on the ground will be "t"

so its vertical displacement will be

\Delta y = -1.60 m

now we will have

-1.60 = v_y t + \frac{1}{2}at^2

-1.60 = (13.2sin54)t - \frac{1}{2}(9.8)t^2

4.9 t^2 - 10.7t - 1.60 = 0

t = 2.3 s

Now the time after which it will reach the fence will be t1 = 1.8 s

so total time after which it will fall on other side of fence

t_2 = t - t_1

t_2 = 2.3 - 1.8 = 0.5 s

now the displacement on the other side is given as

\Delta x = (vcos54) t_2

\Delta x = (13.2 cos54)(0.5)

\Delta x = 3.88 m

4 0
2 years ago
Other questions:
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    10·1 answer
  • In a laboratory test of tolerance for high acceleration, a pilot is swung in a circle 13.0 m in diameter. It is found that the p
    6·1 answer
  • Which of the following statements is false?
    6·2 answers
  • A force pair is produced when a tennis racket strikes a tennis ball. Which of the following best explains why the tennis ball do
    8·1 answer
  • What is the force of gravity (from the Earth) on the 700kg satellite if it’s 10km above the Earths surface?
    5·1 answer
  • Psi communication refers to the transfer of information through a/an ________ process.
    10·1 answer
  • As computer structures get smaller and smaller, quantum rules start to create difficulties. Suppose electrons move through a cha
    11·1 answer
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
  • Tech A says that some electric actuators are positioned by an A/C ECU which checks the air flow with sensors. Tech B says that e
    12·1 answer
  • A 10 kg ball moving at 13 m/s strikes a 20 kg ball at rest. after the collision the 10 kg ball is moving with a velocity of 7m/s
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!