Answer:- Volume of the gas in the flask after the reaction is 156.0 L.
Solution:- The balanced equation for the combustion of ethane is:

From the balanced equation, ethane and oxygen react in 2:7 mol ratio or 2:7 volume ratio as we are assuming ideal behavior.
Let's see if any one of them is limiting by calculating the required volume of one for the other. Let's say we calculate required volume of oxygen for given 36.0 L of ethane as:

= 126 L 
126 L of oxygen are required to react completely with 36.0 L of ethane but only 105.0 L of oxygen are available, It means oxygen is limiting reactant.
let's calculate the volumes of each product gas formed for 105.0 L of oxygen as:

= 60.0 L 
Similarly, let's calculate the volume of water vapors formed:

= 90.0 L 
Since ethane is present in excess, the remaining volume of it would also be present in the flask.
Let's first calculate how many liters of it were used to react with 105.0 L of oxygen and then subtract them from given volume of ethane to know it's remaining volume:

= 30.0 L 
Excess volume of ethane = 36.0 L - 30.0 L = 6.0 L
Total volume of gas in the flask after reaction = 6.0 L + 60.0 L + 90.0 L = 156.0 L
Hence. the answer is 156.0 L.
<span>The correct answer should be two oxygen atoms. That's because it's properties are similar to carbon insofar that it can form four bonds, so if it forms bonds with 2 oxygen atoms then it will have all four bonds created since Oxygen forms double bonds. This would make SiO2 which is also known worldwide as silica.</span>
Answer:
B,C,D
Explanation:
The yield of CCl4 depends on the amount of CH4 in a 1:1 ratio. The amount of Cl2 is twice that of CH4 hence some must be left over. To ensure that all the Cl2 is used up, more CH4 must added to the system.
Answer:
P = 17.9618 atm
Explanation:
The osmotic pressure can be calculated and treated as if we are talking about an ideal gas, and it's expression is the same:
pV = nRT
However the difference, is that instead of using moles, it use concentration so:
p = nRT/V ----> but M = n/V so
p = MRT
We have the temperature of 18 °C (K = 18+273.15 = 291.15 K) the value of R = 0.08206 L atm / K mol, so we need to calculate the concentration, and we have the mass of HCl, so we use the molar mass of HCl which is 36.45 g/mol:
n = 13.7/36.45 = 0.3759 moles
M = 0.3759/0.5 = 0.7518 M
Now that we have the concentration, let's solve for the osmotic pressure:
p = 0.7518 * 0.08206 * 291.15
<em><u>p = 17.9618 atm</u></em>
Answer:
The concentration of Li (in wt%) is 3,47g/mol
Explanation:
To obtain the 2,42g/cm³ of density:
2,42g/cm³ = 2,71g/cm³X + 0,534g/cm³Y <em>(1)</em>
<em>Where X is molar fraction of Al and Y is molar fraction of Li.</em>
X + Y = 1 <em>(2)</em>
Replacing (2) in (1):
Y = 0,13
Thus, X = 0,87
The weight of Al and Li is:
0,87*26,98g/mol = 23,4726 g of aluminium
0,13*6,941g/mol = 0,84383 g of lithium
The concentration of Li (in wt%) is:
0,84383g/(0,84383g+23,4726g) ×100= <em>3,47%</em>