answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
2 years ago
15

A linear accelerator produces a pulsed beam of electrons. The pulse current is 0.50 A, and the pulse duration is 0.10 μs. (a) Ho

w many electrons are accelerated per pulse? (b) What is the average current for a machine operating at 500 pulses/s? If the electrons are accelerated to an energy of 50 MeV, what are the (c) average power and (d) peak power of the accelerator?

Physics
2 answers:
e-lub [12.9K]2 years ago
6 0

Explanation:

Below is an attachment containing the solution.

Crank2 years ago
5 0

Answer:

a)N = 3.125 * 10¹¹

b) I(avg)  = 2.5 × 10⁻⁵A

c)P(avg) = 1250W

d)P = 2.5 × 10⁷W

Explanation:

Given that,

pulse current is 0.50 A

duration of pulse Δt = 0.1 × 10⁻⁶s

a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles

N = Δq/e

charge is given by Δq = IΔt

so,

N = IΔt / e

N = \frac{(0.5)(0.1 * 10^-^6)}{(1.6 * 10^-^1^9)} \\= 3.125 * 10^1^1

N = 3.125 * 10¹¹

b) Q = nqt

where q is the charge of 1puse

n = number of pulse

the average current is given as I(avg) = Q/t

I(avg) = nq

I(avg) = nIΔt

         = (500)(0.5)(0.1 × 10⁻⁶)

         = 2.5 × 10⁻⁵A

C)  If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,

eV = K

V = K/e

the power is given by

P = IV

P(avg) = I(avg)K / e

P(avg) = \frac{(2.5 * 10^-^5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}

= 1250W

d) Final peak=

P= Ik/e

= = P(avg) = \frac{(0.5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}\\2.5 * 10^7W

P = 2.5 × 10⁷W

You might be interested in
Two large parallel conducting plates carrying opposite charges of equal magnitude are separated by 2.20 cm. Part A If the surfac
alukav5142 [94]

Answer:

5308.34 N/C

Explanation:

Given:

Surface density of each plate (σ) = 47.0 nC/m² = 47\times 10^{-9}\ C/m^2

Separation between the plates (d) = 2.20 cm

We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

E=\dfrac{\sigma}{2\epsilon_0}

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

E_{between}=E+E=2E=\frac{2\sigma}{2\epsilon_0}=\frac{\sigma}{\epsilon_0}

Now, plug in  47\times 10^{-9}\ C/m^2 for 'σ' and 8.85\times 10^{-12}\ F/m for \epsilon_0 and solve for the electric field. This gives,

E_{between}=\frac{47\times 10^{-9}\ C/m^2}{8.854\times 10^{-12}\ F/m}\\\\E_{between}= 5308.34\ N/C

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C

5 0
1 year ago
An apple is whirled round in a horizontal circle on the end of a string which is tied to the stalk. It is whirled faster and fas
Brrunno [24]

when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as

T=mv²/r

where T = tension force in the string , m = mass of the apple

v = speed of apple , r = radius of circle.

clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.

at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks

6 0
1 year ago
A box with a mass of 100.0 kg slides down a ramp with a 50 degree angle. What is the weight of the box? N What is the value of t
nadya68 [22]

1) weight of the box: 980 N

The weight of the box is given by:

W=mg

where m=100.0 kg is the mass of the box, and g=9.8 m/s^2 is the acceleration due to gravity. Substituting in the formula, we find

W=(100.0 kg)(9.8 m/s^2)=980 N


2) Normal force: 630 N

The magnitude of the normal force is equal to the component of the weight which is perpendicular to the ramp, which is given by

N=W cos \theta

where W is the weight of the box, calculated in the previous step, and \theta=50^{\circ} is the angle of the ramp. Substituting, we find

N=(980 N)(cos 50^{\circ})=630 N


3) Acceleration: 7.5 m/s^2

The acceleration of the box along the ramp is equal to the component of the acceleration of gravity parallel to the ramp, which is given by

a_p = g sin \theta

Substituting, we find

W_p = (9.8 m/s^2)(sin 50^{\circ})=7.5 m/s^2

5 0
1 year ago
On a cold winter day when the temperature is −20∘C, what amount of heat is needed to warm to body temperature (37 ∘C) the 0.50 L
vlabodo [156]

Answer:

75.6J

Explanation:

Hi!

To solve this problem we must use the first law of thermodynamics that states that the heat required to heat the air is the difference between the energy levels of the air when it enters and when it leaves the body,

Given the above we have the following equation.

Q=(m)(h2)-(m)(h1)

where

m=mass=1.3×10−3kg.

h2= entalpy at 37C

h1= entalpy at -20C

Q=m(h2-h1)

remember that the enthalpy differences for the air can approximate the specific heat multiplied by the temperature difference

Q=mCp(T2-T1)

Cp= specific heat of air = 1020 J/kg⋅K

Q=(1.3×10−3)(1020)(37-(-20))=75.6J

4 0
1 year ago
An inline skater skates on a circular track 120.0 m in diameter at a tangential speed of 9.20 m/s. If the skater’s mass is 68.5
jok3333 [9.3K]

Answer:

The centripetal force acting on the skater is <u>48.32 N.</u>

Explanation:

Given:

Radius of circular track is, R=120.0\ m

Tangential speed of the skater is, v=9.20\ m/s

Mass of the skater is, m=68.5\ kg

We are asked to find the centripetal force acting on the skater.

We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.

Centripetal force acting on the skater is given as:

F_c=\frac{mv^2}{R}

Now, plug in the given values of the known quantities and solve for centripetal force, F_c. This gives,

F_c=\frac{68.5\times (9.20)^2}{120.0}\\\\F_c=\frac{68.5\times 84.64}{120}\\\\F_c=\frac{5797.84}{120}\\\\F_c=48.32\ N

Therefore, the centripetal force acting on the skater is 48.32 N.

3 0
1 year ago
Other questions:
  • A 16-kg scooter is moving at a speed of 7 m/s. The scooter’s speed doubles. What is the scooter’s kinetic energy when its speed
    5·1 answer
  • As an object moves along the x axis, many measurements are made of its position, enough to generate a smooth, accurate graph of
    12·2 answers
  • A sky diver steps from a high-flying helicopter. if there were not air resistance, how fast would she be falling at the end of a
    12·1 answer
  • A varying force is given by F=Ae ^-kx, where x is the position;A and I are constants that have units of N and m^-1 , respectivel
    11·1 answer
  • A helicopter flies 250 km on a straight path in a direction 60° south of east. The east component of the helicopter’s displaceme
    7·2 answers
  • A 10N force pulls to the right and friction opposes 2N. If the object is 20kg,find the acceleraton.
    9·2 answers
  • A mass of 0.4 kg hangs motionless from a vertical spring whose length is 0.76 m and whose unstretched length is 0.41 m. Next the
    7·1 answer
  • At a given instant of time, a car and a truck are traveling side by side in adjacent lanes of a highway. The car has a greater v
    8·1 answer
  • A rectangular loop of wire of width 10 cm and length 20 cm has a current of 2.5 A flowing through it. Two sides of the loop are
    14·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!