answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
2 years ago
15

A linear accelerator produces a pulsed beam of electrons. The pulse current is 0.50 A, and the pulse duration is 0.10 μs. (a) Ho

w many electrons are accelerated per pulse? (b) What is the average current for a machine operating at 500 pulses/s? If the electrons are accelerated to an energy of 50 MeV, what are the (c) average power and (d) peak power of the accelerator?

Physics
2 answers:
e-lub [12.9K]2 years ago
6 0

Explanation:

Below is an attachment containing the solution.

Crank2 years ago
5 0

Answer:

a)N = 3.125 * 10¹¹

b) I(avg)  = 2.5 × 10⁻⁵A

c)P(avg) = 1250W

d)P = 2.5 × 10⁷W

Explanation:

Given that,

pulse current is 0.50 A

duration of pulse Δt = 0.1 × 10⁻⁶s

a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles

N = Δq/e

charge is given by Δq = IΔt

so,

N = IΔt / e

N = \frac{(0.5)(0.1 * 10^-^6)}{(1.6 * 10^-^1^9)} \\= 3.125 * 10^1^1

N = 3.125 * 10¹¹

b) Q = nqt

where q is the charge of 1puse

n = number of pulse

the average current is given as I(avg) = Q/t

I(avg) = nq

I(avg) = nIΔt

         = (500)(0.5)(0.1 × 10⁻⁶)

         = 2.5 × 10⁻⁵A

C)  If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,

eV = K

V = K/e

the power is given by

P = IV

P(avg) = I(avg)K / e

P(avg) = \frac{(2.5 * 10^-^5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}

= 1250W

d) Final peak=

P= Ik/e

= = P(avg) = \frac{(0.5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}\\2.5 * 10^7W

P = 2.5 × 10⁷W

You might be interested in
Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C.
salantis [7]

Explanation:

Using table A-3, we will obtain the properties of saturated water as follows.

Hence, pressure is given as p = 4 bar.

u_{1} = u_{g} = 2553.6 kJ/kg

v_{1} = v_{g} = 0.4625 m^{3}/kg

At state 2, we will obtain the properties. In a closed rigid container, the specific volume will remain constant.

Also, the specific volume saturated vapor at state 1 and 2 becomes equal. So, v_{2} = v_{g} = 0.4625 m^{3}/kg

According to the table A-4, properties of superheated water vapor will obtain the internal energy for state 2 at v_{2} = v_{g} = 0.4625 m^{3}/kg and temperature T_{2} = 360^{o}C so that it will fall in between range of pressure p = 5.0 bar and p = 7.0 bar.

Now, using interpolation we will find the internal energy as follows.

 u_{2} = u_{\text{at 5 bar, 400^{o}C}} + (\frac{v_{2} - v_{\text{at 5 bar, 400^{o}C}}}{v_{\text{at 7 bar, 400^{o}C - v_{at 5 bar, 400^{o}C}}}})(u_{at 7 bar, 400^{o}C - u_{at 5 bar, 400^{o}C}})

     u_{2} = 2963.2 + (\frac{0.4625 - 0.6173}{0.4397 - 0.6173})(2960.9 - 2963.2)

                   = 2963.2 - 2.005

                   = 2961.195 kJ/kg

Now, we will calculate the heat transfer in the system by applying the equation of energy balance as follows.

      Q - W = \Delta U + \Delta K.E + \Delta P.E ......... (1)

Since, the container is rigid so work will be equal to zero and the effects of both kinetic energy and potential energy can be ignored.

            \Delta K.E = \Delta P.E = 0

Now, equation will be as follows.

           Q - W = \Delta U + \Delta K.E + \Delta P.E

           Q - 0 = \Delta U + 0 + 0

           Q = \Delta U

Now, we will obtain the heat transfer per unit mass as follows.

          \frac{Q}{m} = \Delta u

         \frac{Q}{m} = u_{2} - u_{1}

                      = (2961.195 - 2553.6)

                      = 407.595 kJ/kg

Thus, we can conclude that the heat transfer is 407.595 kJ/kg.

4 0
2 years ago
The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
ludmilkaskok [199]

Answer: 8.1 x 10^24

Explanation:

I(t) = (0.6 A) e^(-t/6 hr)

I'll leave out units for neatness: I(t) = 0.6e^(-t/6)

If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).

For neatness let k = 1/(6x3600) = 4.63x10^-5, then:

I(t) = 0.6e^(-kt)

Providing t is in seconds, total charge Q in coulombs is

Q= ∫ I(t).dt evaluated from t=0 to t=∞.

Q = ∫(0.6e^(-kt)

= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.

= -(0.6/k)[e^-∞ - e^-0]

= -0.6/k[0 - 1]

= 0.6/k

= 0.6/(4.63x10^-5)

= 12958 C

Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.

5 0
2 years ago
two people, each with a mass of 70 kg, are wearing inline skates and are holding opposite ends of a 15m rope. One person pulls f
Zina [86]

Answer:

7.75 s

Explanation:

Newton's second law:

∑F = ma

35 N = (70 kg) a

a = 0.5 m/s²

Given v₀ = 0 m/s and Δx = 15 m:

Δx = v₀ t + ½ at²

(15 m) = (0 m/s) t + ½ (0.5 m/s²) t²

t = 7.75 s

5 0
2 years ago
Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of
adoni [48]

Answer:

3311N

Explanation:

r = radius = 600m

V = speed = 150m/s

Mass = weight = 70kg

The weight of pilot when calculated due to circular motion

W = tv

Fv = mv²/r

Fv = 70x150²/600

Fv = 79x22500/600

= 15750000/600

= 2625N

Real Weight of the pilot = m x g

= 70 x 9.8

= 686N

The apparent Weight is calculated by

Mv²/r + mg

= 2625N + 686N

= 3311 N

Therefore the apparent Weight is 3311N

6 0
1 year ago
List some reasons why growth characteristics are more useful on agar plates than on agar slants
SpyIntel [72]
Usually, in culturing of the bacteria we have a slant and then portion f it is transferred to the agar plate. The growth characteristics are more useful in the agar plates because it is where we really do the observation because bacteria in slants are still to be transferred in the agar plates. 
5 0
2 years ago
Read 2 more answers
Other questions:
  • tas watches as his uncle changes a flat tire on a car. his uncle raises the car using a machine called a jack. each time his unc
    9·2 answers
  • A sky diver steps from a high-flying helicopter. if there were not air resistance, how fast would she be falling at the end of a
    12·1 answer
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • Estimate how long it would take one person to mow a football field using an ordinary home lawn mower. suppose that the mower mov
    5·1 answer
  • If you know the amount of the unbalanced force acting upon an object and the mass of the object, using Newton's 2nd Law what cou
    6·2 answers
  • A basketball player standing up with the hoop launches the ball straight up with an initial velocity of v_o = 3.75 m/s from 2.5
    5·1 answer
  • A simple pendulum of length 2.5 m makes 5.0 complete swings in 16 s. What is the acceleration of gravity at the location?
    12·1 answer
  • 15) A 328-kg car moving at 19.1 m/s in the +x direction hits from behind a second car moving at 13 m/s in the same direction. If
    11·1 answer
  • Consider an opaque horizontal plate that is well insulated on its back side. The irradiation on the plate is 2500 W/m2, of which
    14·1 answer
  • Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!