answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
2 years ago
15

A linear accelerator produces a pulsed beam of electrons. The pulse current is 0.50 A, and the pulse duration is 0.10 μs. (a) Ho

w many electrons are accelerated per pulse? (b) What is the average current for a machine operating at 500 pulses/s? If the electrons are accelerated to an energy of 50 MeV, what are the (c) average power and (d) peak power of the accelerator?

Physics
2 answers:
e-lub [12.9K]2 years ago
6 0

Explanation:

Below is an attachment containing the solution.

Crank2 years ago
5 0

Answer:

a)N = 3.125 * 10¹¹

b) I(avg)  = 2.5 × 10⁻⁵A

c)P(avg) = 1250W

d)P = 2.5 × 10⁷W

Explanation:

Given that,

pulse current is 0.50 A

duration of pulse Δt = 0.1 × 10⁻⁶s

a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles

N = Δq/e

charge is given by Δq = IΔt

so,

N = IΔt / e

N = \frac{(0.5)(0.1 * 10^-^6)}{(1.6 * 10^-^1^9)} \\= 3.125 * 10^1^1

N = 3.125 * 10¹¹

b) Q = nqt

where q is the charge of 1puse

n = number of pulse

the average current is given as I(avg) = Q/t

I(avg) = nq

I(avg) = nIΔt

         = (500)(0.5)(0.1 × 10⁻⁶)

         = 2.5 × 10⁻⁵A

C)  If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,

eV = K

V = K/e

the power is given by

P = IV

P(avg) = I(avg)K / e

P(avg) = \frac{(2.5 * 10^-^5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}

= 1250W

d) Final peak=

P= Ik/e

= = P(avg) = \frac{(0.5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}\\2.5 * 10^7W

P = 2.5 × 10⁷W

You might be interested in
A 250 Hz tuning fork is struck and the intensity at the source is I1 at a distance of one meter from the source. (a) What is the
Zina [86]

Answer:

a) 0.0625 I_1

b) 3.16 m

Explanation:

<u>Concepts and Principles  </u>

The intensity at a distance r from a point source that emits waves of power P is given as:  

I=P/4π*r^2                         (1)

<u>Given Data</u>

f (frequency of the tuning fork) = 250 Hz

I_1 is the intensity at the source a distance r_1 = I m from the source.  

<u>Required Data</u>

- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.

- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.  

<u>solution:</u>

(a)  

According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:

I∝1/r^2

Set the proportionality:  

I_1/I_2=(r_2/r_1)^2                                 (2)

Solve for I_2 :  

I_2=I_1(r_2/r_1)^2  

I_2=0.0625 I_1

(b)  

Solve Equation (2) for r_2:  

r_2=(√I_1/I_2)*r_1

where I_2 = (1/10)*I_1:

r_2=(√I_1/1/10*I_1)*r_1

     =3.16 m

3 0
2 years ago
Racing greyhounds are capable of rounding corners at very high speeds. A typical greyhound track has turns that are 45-m-diamete
Margarita [4]

Explanation:

It is given that,

Diameter of the semicircle, d = 45 m

Radius of the semicircle, r = 22.5 m      

Speed of greyhound, v = 15 m/s

The greyhound is moving under the action of centripetal acceleration. Its formula is given by :

a=\dfrac{v^2}{r}

a=\dfrac{(15)^2}{22.5}

a=10\ m/s^2

We know that, g=9.8\ m/s^2

a=\dfrac{10\times g}{9.8}

a=1.02\ g

Hence, this is the required solution.                                              

5 0
1 year ago
An electric clock is hanging on a wall. As you are watching the second hand rotate, the clock's battery stops functioning, and t
Setler [38]

Answer:

B. W is positive and a is negative

Explanation:

As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have

initial angular velocity is termed as positive angular velocity

\omega = positive

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed

so we will have

\alpha = negative

so here correct answer is

B. W is positive and a is negative

8 0
1 year ago
A pitcher delivers a fast ball with a velocity of 43 m/s to the south. the batter hits the ball and gives it a velocity of 51 m/
hoa [83]
Assuming north as positive direction, the initial and final velocities of the ball are:
v_i=-43 m/s (with negative sign since it is due south)
v_f=+51 m/s
the time taken is t=1.0 ms=0.001 s, so the average acceleration of the ball is given by
a= \frac{v_f-v_i}{t}= \frac{51 m/s-(-43 m/s)}{0.001 s}=9.4 \cdot 10^4 m/s^2
And the positive sign tells us the direction of the acceleration is north.
4 0
1 year ago
a 50kg person is standing still in ice skates throws their 2.0kg helmet to the right at 25m/s while on a friction less surface.
Roman55 [17]

Answer:

Vp = 1 [m/s]

Explanation:

In order to solve this problem, we must use the principle of conservation of the amount of movement. In the same way, analyze the before and after of the actions.

<u>The moment before</u>

The 50kg person is still hold (no movement) with the 2kg helmet

<u>The moment after</u>

The helmet moves at 25[m/s] in one direction, the person moves in the opposite direction, due to the launch of the helmet.

In this way we can apply the principle of conservation of movement, expressing the before and after. To the left we have the before and to the right of the equal sign we have the after.

Σm*V1 = Σm*V

where:

m = total mass = (2 + 50) = 52[kg]

V1 = velocity before the lunch = 0

(50 + 2)*V1 = (25*2) - (Vp*50)

0 = 50 - 50*Vp

50 = 50*Vp

Vp = 1 [m/s]

8 0
2 years ago
Other questions:
  • The heat capacity of an object depends in part on its ____.
    6·1 answer
  • When a driver presses the brake pedal, his car stops with an acceleration of -2.1 m/s2. How far will the car travel while coming
    8·1 answer
  • A neutral K meson at rest decays into two π mesons, which travel in opposite directions along the x axis with speeds of 0.828c.
    6·2 answers
  • A professor's office door is 0.99 m wide, 2.2 m high, 4.2 cm thick; has a mass of 27 kg, and pivots on frictionless hinges. A "d
    14·1 answer
  • Calculate the energy released in joules when one mole of polonium-214 decays according to the following equation21484 Po --&gt;
    9·1 answer
  • What conclusion can be derived by comparing the central tendencies of the two data sets?
    6·1 answer
  • A 50 g tennis ball travels at a velocity of 15 m/s, hits a basketball with a mass of 600 g that is stationary on a frictionless
    9·1 answer
  • Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keep
    13·2 answers
  • A rocket train car that is 30 m long is traveling from Los Angeles to New York at v=0.5c when a light at the center of the car f
    11·1 answer
  • Observe: Up until now, all the problems you have solved have involved converting only one unit. However, some conversion problem
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!