answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
2 years ago
10

The current through a certain heater wire is found to be fairly independent of its temperature. If the current through the heate

r wire is doubled, the amount of energy delivered by the heater in a given time interval will(a) increase by a factor of two. (b) decrease by a factor of two. (c) increase by a factor of four.(d) decrease by a factor of four. (e) increase by a factor of eight.
Physics
1 answer:
irina [24]2 years ago
5 0

Answer:

(c) increase by a factor of four

Explanation:

energy = power x time, and power = resistance x current ^2. 2^2 = 4.

You might be interested in
An ocean liner is cruising at 10 meters/second and is about to approach a stationary ferryboat. A parcel is released from the oc
Afina-wow [57]
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.

First, we determine how long the parcel will fall using:

s = ut + 1/2 at²

where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity. 

5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds

Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time

The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.

Distance = 10 * 1.06
Distance = 10.6 meters

The boat should be 10.6 meters away horizontally from the point of release.
4 0
2 years ago
A bobsled is pushed with a force of 190.08 N. The sled has a mass of 28 kg. What is the acceleration of the bobsled? Report to t
Usimov [2.4K]
By definition it is known that force equals mass by acceleration. In other words F = m * a. To find the acceleration, you must clear the formula mentioned. Therefore, for a force of 190.08N and a mass of 28 Kg, we have that the acceleration is a = F / m = (190.08) / (28) = 6.79 m / s ^ 2
6 0
2 years ago
At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0rad/s2 until a ci
kozerog [31]

Answer:

θ=108rad

t =10.29seconds

α=-8.17rad/s²

Explanation:

Given that

At t=0, Wo=24rad/sec

Constant angular acceleration =30rad/s²

At t=2, θ=432rad as it try to stop because the circuit break

Angular motion

W=Wo+αt

θ=Wot+1/2αt²

W²=Wo²+2αθ

We need to find θ between 0sec to 2sec when the wheel stop

a. θ=Wot+1/2αt²

θ=24×2+1/2×30×2²

θ=48+60

θ=108rad.

b. W=Wo+αt

W=24+30×2

W=84rad/s

This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.

Wo=84rad/sec

W=0rad/s, because the wheel stop at θ=432rad

Using W²=Wo²+2αθ

0²=84²+2×α×432

-84²=864α

α=-8.17rad/s²

It is negative because it is decelerating

Now, time taken for the wheel to stop

W=Wo+αt

0=84-8.17t

-84=-8.17t

Then t =10.29seconds.

a. θ=108rad

b. t =10.29seconds

c. α=-8.17rad/s²

3 0
2 years ago
In springboard diving, the diver strides out to the end of the board, takes a jump onto its end, and uses the resultant spring-l
Ksenya-84 [330]

Answer:

10.4 m/s

Explanation:

The problem can be solved by using the following SUVAT equation:

v=u+at

where

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

For the diver in the problem, we have:

u=+6.3 m/s is the initial velocity (positive because it is upward)

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

v=+6.3 + (-9.8)(1.7)=-10.4 m/s

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.

3 0
2 years ago
Read 2 more answers
A 4-N object object swings on the end of a string as a simple pendulum. At the bottom of the swing, the tension in the string is
Amanda [17]

Answer:

Explanation:

Given mg = 4N .

m = 4 / g

At the bottom of the swing let centripetal acceleration be a

T - mg = ma

9 - 4 = ma

5 = 4 a  / g

a =  5g / 4

6 0
2 years ago
Other questions:
  • A kayaker paddles at 4.0 m/s in a direction 30° south of west. He then turns and paddles at 3.7 m/s in a direction 20° west of s
    14·2 answers
  • Isaac throws an apple straight up from 1.0 m above the ground, reaching a maximum height of 35 meters. Neglecting air resistance
    10·2 answers
  • You throw a beanbag in the air and catch it 2.2 s later at the same place at which you threw it. How high did it go? What was th
    9·1 answer
  • If the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The vol
    13·1 answer
  • The deepest point of the pacific ocean is 11,033 m, in the mariana trench. what is the gauge pressure in the water at that point
    6·1 answer
  • Jin walked 4 km on a straight path to get to the sandwich shop. He traveled 30° south of east.
    10·2 answers
  • A horizontal jet of water is made to hit a vertical wall with a negligible rebound. If the speed of water from the jet is 'v', t
    13·1 answer
  • A winch is a mechanical device that is used to adjust the tension in a rope or line. A weekend sailor works the manual winch to
    13·1 answer
  • A light bulb in a battery powered desk lamp has a current of 0.042 A and is connected to a 9.2 V battery. What is the resistance
    9·2 answers
  • Four rods that obey Hooke's law are each put under tension. (a) A rod 50.0 cm50.0 cm long with cross-sectional area 1.00 mm21.00
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!