Answer:
NaI > Na2SO4 > Co Br3
meaning that NaI has the highest freezing point, and Co Br3 has the lowest freezing point.
Explanation:
The freezing point depression is a colligative property.
That means that it depends on the number of solute particles dissolved.
The formula to calculate the freezing point depression of a solution of a non volatile solute is:
ΔTf = i * Kf * m
Where kf is a constant, m is the molality and i is the van't Hoff factor.
Molality, which is number of moles per kg of solvent, counts for the number of moles dissolved and the van't Hoff factor multipllies according for molecules that dissociate.
The higher the number of molecules that dissociate, the higher the van't Hoff, the greater the freezing point depression and the lower the freezing point.
As the question states that you assume equal concentrations (molality) and complete dissociation you just must find the number of ions generated by each solute, in this way:
NH4 I → NH4(+) + I(-) => 2 ions
Co Br3 → Co(+) + 3 Br(-) => 4 ions
Na2SO4 → 2Na(+) + SO4(2-) => 3 ions.
So, Co Br3 is the solute that generate more particles and that solution will exhibit the lowest freezing point among the options given, Na2SO4 is next and the NaI is the third. Ordering the freezing point from higher to lower the rank is NaI > Na2SO4 > CoBr3, which is the answer given.
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.
Answer:
¨it is negatively charged¨ i took the science test in edgeunity and got it right
Explanation:
Hi:)
Answer:
4.00 moles
Explanation:
Avogadro´s number is 6.022 x 10²³ molecules, atoms, particles, etc.
Here we are talking of atoms of copper, so 1 mol of copper is equal to 6.022 x 10²³ atoms, and we only need to setup the proportion to find the number of mol in 2.41 x 10²⁴ atoms. ( Think of it like a dozen, avogadro´s is 6.022 x 10²³ )
( 1 mol copper/ 6.022 x 10²³ atoms of copper ) x 2.41 x 10²⁴ atoms
= 4.00 moles