answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lyrx [107]
1 year ago
5

A bicyclist is riding to the left with a velocity of 14 \,\dfrac{\text m}{\text s}14 s m ​ 14, start fraction, start text, m, en

d text, divided by, start text, s, end text, end fraction. After a steady gust of wind that lasts 3.5\,\text s3.5s3, point, 5, start text, s, end text, the bicyclist is moving to the left with a velocity of 21\,\dfrac{\text m}{\text s}21 s m ​ 21, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction. Assuming the acceleration is constant, what is the acceleration of the bicyclist?
Physics
1 answer:
Gnesinka [82]1 year ago
5 0

Answer:

-2.0 m/s²

Explanation:Acceleration is the rate of change of velocity.

\begin{aligned}a&=\dfrac{\text{Change in velocity}}{\text{Change in time}}\\ \\ &=\dfrac{v_f-v_i}{\Delta t} \end{aligned}

a

​

 

=

Change in time

Change in velocity

​

=

Δt

v

f

​

−v

i

​

​

​

Hint #22 / 3

We can calculate the bicyclist's acceleration from the final velocity v_fv

f

​

v, start subscript, f, end subscript, initial velocity v_iv

i

​

v, start subscript, i, end subscript, and time interval \Delta tΔtdelta, t.

\begin{aligned}a&=\dfrac{v_f-v_i}{\Delta t}\\ \\ &=\dfrac{-21\,\dfrac{\text m}{\text s}-(-14\,\dfrac{\text m}{\text s})}{3.5\,\text s}\\ \\ &=-2.0\,\dfrac{\text m}{\text s^2}\end{aligned}

a

​

 

=

Δt

v

f

​

−v

i

​

​

=

3.5s

−21

s

m

​

−(−14

s

m

​

)

​

=−2.0

s

2

m

​

​

Hint #33 / 3

The acceleration of the bicyclist is -2.0\,\dfrac{\text m}{\text s^2}−2.0

s

2

m

​

minus, 2, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction.

You might be interested in
The position of an object is given by x = at3 - bt2 + ct,where a = 4.1 m/s3, b = 2.2 m/s2, c = 1.7 m/s, and x and t are in SI un
Elza [17]

Answer:

The answer to your question is: 15 m/s2

Explanation:

Equation    x = at3 - bt2 + ct

a = 4.1 m/s3

b = 2.2 m/s2

c = 1.7 m/s

First we find  x at t = 4.1 s

x = 4.1(4.1)3 - 2.2(4.1)2 + 1.7(4.1)

x = 4.1(68.921) - 2.2(16.81) + 6.97

x = 282.58 - 36.98 + 6.98

x = 252.58 m

Now we find speed

v = x/t = 252.58/ 4.1 = 61.6 m/s

Finally

acceleration = v/t = 61.6/4.1 = 15 m/s2

6 0
2 years ago
A submarine periscope uses two totally reflecting 45-45-90 prisms with total internal reflection on the sides adjacent to the 45
Likurg_2 [28]

Answer

Given,

Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.

refractive index of water, n_a = 1.33

refractive index of glass, n_g = 1.52

When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.

7 0
1 year ago
The pfsense firewall, like other firewalls on the market, relies on __________ to expose an ip address from the private network
sashaice [31]
T<span>he pfsense firewall, like other firewalls on the market, relies on the subnet mask to expose an ip address from the private network and bind it to an address on the public network. </span>
6 0
2 years ago
A mover pushes a 255 kg piano
faust18 [17]

Answer:

0.495 ms^{-2}

Explanation:

According to the newton's second law of motion we can apply F=ma hear

Force = mass * acceleration

(assume the piano is moving left side )

←F = ma

F_(pull)+ F_(push)= M*a\\77.5 + 48.7 = 255 *a\\a = 0.495 ms^{-2}

7 0
2 years ago
In a house the temperature at the surface of a window is 28.9 °C. The temperature outside at the window surface is 7.89 °C. Heat
Alenkasestr [34]

Answer:

-13.18°C

Explanation:

To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.

Its definition is given by the function

\frac{Q}{t} = \frac{kA\Delta T}{d}

Where,

Q = The amount of heat transferred

t = time

k = Thermal conductivity constant

A = Cross-sectional area

\Delta T = The difference in temperature between one side of the material and the other

d= thickness of the material

The problem says that there is a loss of heat twice that of the initial state, that is

Q_2 = 2*Q_1

Replacing,

kA\frac{\Delta T_m}{x} = 2*kA\frac{\Delta T}{x}

\frac{\Delta T}{x}=2*\frac{\Delta T}{x}

\frac{T_i-T_o}{x} = 2\frac{T_1-T_2}{x}

\frac{28.9-T_o}{x} = 2\frac{28.9-7.86}{x}

Solvinf for T_o,

T_o = -13.18

Therefore the temprature at the outside windows furface when the heat lost per second doubles is  -13.18°C

3 0
2 years ago
Other questions:
  • The first thing to focus on when creating a workout plan is
    7·2 answers
  • A golf ball is hit by a club. The graph shows the variation with time of the force exerted on the bal
    11·2 answers
  • Atmospheric pressure decreases as altitude increases. in other words, there is more air pushing down on you at sea level, and th
    8·1 answer
  • Two students push a heavy crate across the floor. John pushes with a force of 185 N due east and Joan pushes with a force of 165
    14·1 answer
  • A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 9.
    11·1 answer
  • A 480 g peregrine falcon reaches a speed of 69 m/s in a vertical dive called a stoop. If we assume that the falcon speeds up und
    7·1 answer
  • An electron is projected with an initial speed of 3.9 × 105 m/s directly toward a proton that is fixed in place. If the electron
    14·1 answer
  • A skateboarder is attempting to make a circular arc of radius r = 16 m in a parking lot. The total mass of the skateboard and sk
    10·1 answer
  • The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick
    9·1 answer
  • Using Newton’s second law, why do you think a cotton ball may not be used as a baseball in a baseball game.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!