answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lyrx [107]
1 year ago
5

A bicyclist is riding to the left with a velocity of 14 \,\dfrac{\text m}{\text s}14 s m ​ 14, start fraction, start text, m, en

d text, divided by, start text, s, end text, end fraction. After a steady gust of wind that lasts 3.5\,\text s3.5s3, point, 5, start text, s, end text, the bicyclist is moving to the left with a velocity of 21\,\dfrac{\text m}{\text s}21 s m ​ 21, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction. Assuming the acceleration is constant, what is the acceleration of the bicyclist?
Physics
1 answer:
Gnesinka [82]1 year ago
5 0

Answer:

-2.0 m/s²

Explanation:Acceleration is the rate of change of velocity.

\begin{aligned}a&=\dfrac{\text{Change in velocity}}{\text{Change in time}}\\ \\ &=\dfrac{v_f-v_i}{\Delta t} \end{aligned}

a

​

 

=

Change in time

Change in velocity

​

=

Δt

v

f

​

−v

i

​

​

​

Hint #22 / 3

We can calculate the bicyclist's acceleration from the final velocity v_fv

f

​

v, start subscript, f, end subscript, initial velocity v_iv

i

​

v, start subscript, i, end subscript, and time interval \Delta tΔtdelta, t.

\begin{aligned}a&=\dfrac{v_f-v_i}{\Delta t}\\ \\ &=\dfrac{-21\,\dfrac{\text m}{\text s}-(-14\,\dfrac{\text m}{\text s})}{3.5\,\text s}\\ \\ &=-2.0\,\dfrac{\text m}{\text s^2}\end{aligned}

a

​

 

=

Δt

v

f

​

−v

i

​

​

=

3.5s

−21

s

m

​

−(−14

s

m

​

)

​

=−2.0

s

2

m

​

​

Hint #33 / 3

The acceleration of the bicyclist is -2.0\,\dfrac{\text m}{\text s^2}−2.0

s

2

m

​

minus, 2, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction.

You might be interested in
Tom and his little sister are enjoying an afternoon at the ice rink. they playfully place their hands together and push against
Westkost [7]
Newton's third law says:
"<span>For every action, there is an equal and opposite reaction. ".

So, the force that Tom does on the sister is equal to force the sister applies on Tom:
</span>F_t = F_s
<span>where the label "t" means "on Tom", while the label "s" means "on the sister".

From Newton's second law, we also know
</span>F=ma
where m is the mass and a the acceleration. <span>so we can rewrite the first equation as
</span>m_t a_t = m_s a_s
<span>And find Tom's acceleration:
</span>a_t =  \frac{m_s}{m_t} a_s =  \frac{15 kg}{61 kg} (2.1 m/s^2)  =0.52 m/s^2<span>
</span>
5 0
2 years ago
A force of 10 newtons toward the right is exerted on a
weeeeeb [17]

Answer:

Explanation:

coefficient of kinetic friction of wooden floor μ = .4

force of friction = μ R , R is reaction force of floor

R = mg = weight of body

R = 25 N

force of friction = .4 x 25 = 10 N

Net force on the crate = 10 - 10 = zero .

Net force on the body will be nil.

6 0
2 years ago
The grooved pulley of mass m is acted on by a constant force F through a cable which is wrapped securely around the exterior of
Sidana [21]

Answer:

Answer; v= 1.2654m/s

T= 110.76N

Explanation:

Apply Momentum Principle

Fdtro - Mgridt = Iow +Mvr

Fdtro - Mgridt = mK2 v/r1 + Mvr1

85 x 3x 0.345 -11 x 9.81 x 0.23 x 3 =30 x 0.25 x 0.25 x v/0.23 + 11 x v x 0.23 =

v = 1.2654m/s

To find the timed average value

Tdt -Mgdt =MV

T x 3 - 11 x 9.81 x 3 = 11 x 0.778

T= 110.76N

3 0
2 years ago
Sketch the circuit labeling the meter and bulb as two separate resistors connected in parallel to the voltage source. Then show
Ksenya-84 [330]

Answer:

Show attached picture

Explanation:

Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call R_M its internal resistance) and R indicates the resistance of the light bulb.

We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:

R_M = 1000 R (1)

Both  the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

V_M = V_R

Using Ohm's law, V=RI, we can rewrite the previous equation as:

R_M I_M = R I_R

where

I_M is the current in the meter

I_R is the current in the bulb

Using (1), this equation becomes

(1000 R) I_M = R I_R \rightarrow I_M = \frac{I_R}{1000}

so, the current in the meter is 1000 times less than through the bulb.

5 0
2 years ago
What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
murzikaleks [220]
Details are missing in the question. Complete text of the problem:

"The gravitational force exerted on a baseball is 2.28 N down. A pitcher throws the ball horizontally with velocity 16.5 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 181 ms. The ball starts from rest.

(a) Through what distance does it move before its release? (m)
(b) What are the magnitude and direction of the force the pitcher exerts on the ball? (Enter your magnitude to at least one decimal place.)"


Solution

(a) The pitcher accelerates the baseball from rest to a final velocity of v_f = 16.5 m/s, so \Delta v=16.5 m/s, in a time interval of \Delta t = 181 ms=0.181 s. The acceleration of the ball in the horizontal direction (x-axis) is therefore

a_x =  \frac{\Delta v}{\Delta t}= \frac{16.5 m/s}{0.181 s}=91.2 m/s^2

And the distance covered by the ball during this time interval, before it is released, is:

S= \frac{1}{2} a_x (\Delta t)^2 = \frac{1}{2} (91.2 m/s^2)(0.181 s)^2=1.49 m

(b) For this part we need to consider also the weight of the ball, which is W=mg=2.28 N

From this, we find its mass: m= \frac{W}{g}= \frac{2.28 N}{9.81 m/s^2}=0.23 Kg

Now we can calculate the magnitude of the force the pitcher exerts on the ball. On the x-axis, we have

F_x = m a_x = (0.23 kg)(91.2 m/s^2)=20.98 N

We also know that the ball is moving straight horizontally. This means that the vertical component of the force exerted by the pitcher must counterbalance the weight of the ball (acting downward), in order to have a net force of zero along the y-axis, and so:

F_y=W=mg=2.28 N (upward)

So, the magnitude of the force is

F= \sqrt{F_x^2+F_y^2}=  \sqrt{(20.98N)^2+(2.28N)^2}=21.2 N

To find the direction, we should find the angle of F with respect to the horizontal. This is given by

\tan \alpha =  \frac{F_y}{F_x}= \frac{2.28 N}{20.98 N}=0.11

From which we find \alpha=6.2^{\circ}

7 0
2 years ago
Read 2 more answers
Other questions:
  • A stable air mass is most likely to have which characteristic? 1. turbulent air 2. poor surface visibility 3. showery precipitat
    15·1 answer
  • While a roofer is working on a roof that slants at 38.0 ∘ above the horizontal, he accidentally nudges his 95.0 n toolbox, causi
    13·1 answer
  • Waves inwhich the particles vibrate at right angles to direction is called
    8·1 answer
  • Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
    6·2 answers
  • The velocity of a an object in linear motion changes from +25 meters per second to +15 meters per second in 2.0 seconds.
    9·1 answer
  • A satellite, orbiting the earth at the equator at an altitude of 400 km, has an antenna that can be modeled as a 1.76-m-long rod
    15·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • You are comparing two diffraction gratings using two different lasers: a green laser and a red laser. You do these two experimen
    8·1 answer
  • Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at
    11·1 answer
  • Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!