answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
2 years ago
4

A scene in a movie has a stuntman falling through a floor onto a bed in the room below. The plan is to have the actor fall on hi

s back, but a researcher has been hired to investigate the safety of this stunt. When the researcher examines the mattress, she sees that it effectively has a spring constant of 65144 N/m for the area likely to be impacted by the stuntman, but it cannot depress more than 11.79 cm without injuring him. To approach this problem, consider a simplified version of the situation. A mass falls through a height of 3.12 m before landing on a spring of force constant 65144 N/m. Calculate the maximum mass that can fall on the mattress without exceeding the maximum compression distance.
Physics
1 answer:
mojhsa [17]2 years ago
3 0

Answer:

14.27 kg

Explanation:

Potential energy of the body falling from the height = mg (h +e) where m is the mass of the body in kg, g is acceleration due to gravity in m/s² and h is height in m

energy conserved in the mattress by the body falling on it = 0.5 k e² where e is the compression of the mattress and k is the force constant

Potential energy = work done in compressing the mattress to 11.79 cm

m g(h+e) = 0.5 k e²

m = 0.5 k e² /  g(h+e) = ( 0.5 × 65144N/m × (0.1179 m)²) / ( 9.8 m/s² × (3.12m+ 0.1179m) = 14.27 kg

You might be interested in
A11) A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic fiel
vitfil [10]

Answer:

A

Explanation:

From a Solenoid we know that a magnetic fiel is always inversely proportional to lenght L or BL = constant

B= frac{\mu_0}{2R}

As I is constant

\frac{B2}{B1} = \frac{R1}{R2}

B2 = 2mT*\frac{18}{21}

B2 = 1.714mT

7 0
2 years ago
What is the porosity of the sand sample?(The sediment volume for each sample is 400ml.) a. 90.25% b. 72.00% c. 25.50% d. 16.75%
Katyanochek1 [597]
C.25.50% Hope this helps.
7 0
2 years ago
Read 2 more answers
A beam of unpolarized light with intensity I0 falls first upon a polarizer with transmission axis θTA,1 then upon a second polar
loris [4]

Answer:

The intensity I₂ of the light beam emerging from the second polarizer is zero.

Explanation:

Given:

Intensity of first polarizer = Io/2

For the second polarizer, the intensity is equal:

I_{2} =\frac{I_{o} }{2} (cos\theta )^{2} =\frac{I_{o} }{2} (cos90)^{2} =0

5 0
2 years ago
A man holding 7N weight moves 7m horizontal and 5m vertical , find the work done
SashulF [63]

Answer:

35 J

Explanation:

The man is holding the box: this means that he is applying a force vertically upward, to balance the weight of the box (which pushes downward).

Therefore, we can ignore the horizontal displacement of the man, because the force applied (vertically upward) is perpendicular to that displacement (horizontal), so the work done for that is zero.

So, only the vertical motion contributes to the work. The work done by the man is equal to the gain in gravitational potential energy of the box, so:

W=(mg)\Delta h

where

mg=7 N is the weight of the box

\Delta h=5 m is the vertical displacement

Substituting, we find

W=(7N)(5 m)=35 J

8 0
2 years ago
A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
Elden [556K]

Answer:

(A) 374.4 J

(B) -332.8 J

(C) 0 J

(D) 41.6 J

(E)  351.8 J

Explanation:

weight of carton (w) = 128 N

angle of inclination (θ) = 30 degrees

force (f) = 72 N

distance (s) = 5.2 m

(A) calculate the work done by the rope

  • work done = force x distance x cos θ
  • since the rope is parallel to the ramp the angle between the rope and

        the ramp θ will be 0

       work done = 72 x 5.2 x cos 0

       work done by the rope = 374.4 J

(B) calculate the work done by gravity

  • the work done by gravity = weight of carton x distance x cos θ
  • The weight of the carton = force exerted by the mass of the carton = m x g
  • the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.

      work done by gravity = 128 x 5.2  x cos 120

      work done by gravity = -332.8 J

(C) find the work done by the normal force acting on the ramp

  • work done by the normal force = force x distance x cos θ
  • the angle between the normal force and the ramp is 90 degrees

       

         work done by the normal force = Fn x distance x cos θ

         work done by the normal force = Fn x 5.2 x cos 90

         work done by the normal force = Fn x 5.2 x 0

         work done by the normal force = 0 J

(D)  what is the net work done ?

  • The net work done is the addition of the work done by the rope,       gravitational force and the normal force

     net work done = 374.4 - 332.8 + 0 =  41.6 J  

(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal

  • work done by the rope= force x distance x cos θ
  • the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp

work done = 72 x 5.2 x cos 20

work done = 351.8 J

5 0
2 years ago
Other questions:
  • Why are overuse injuries particularly frustrating set-backs?
    13·2 answers
  • Lorenzo is making a prediction. “I learned that nonmetals increase in reactivity when moving from left to right. So I predict th
    12·2 answers
  • Warm moving air makes what?
    5·2 answers
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • An auto moves 10 meters in the first second of travel, 15 more meters in the next second, and 20 more meters during the third se
    12·1 answer
  • A small 12.00 g plastic ball is suspended by a string in a uniform, horizontal electric field. If the ball is in equilibrium whe
    8·1 answer
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
    6·2 answers
  • A 4.0 kg block is resting on a rough horizontal table. The coefficient of static friction us is 0.60. The static friction betwee
    7·1 answer
  • in the space below derive two equations one in the y direction and one in the x direction expressing newton’s second law using s
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!