Explanation:
The waveform expression is given by :
...........(1)
Where
y is the position
t is the time in seconds
The general waveform equation is given by :
..........(2)
Where


On comparing equation (1) and (2) we get :



f = 93.10 Hz
Time period, 

T = 0.010 s
Phase constant, 
Hence, this is the required solution.
Answer:
The gravitational force exerted on the object is 75 N (answer D)
Explanation:
Hi there!
The gravitational force is calculated as follows:
F = m · g
Where:
F = force of gravity.
m = mass of the object.
g = acceleration due to gravity (unknown).
For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:
y = y0 + v0 · t + 1/2 · a · t²
Where:
y = position at time t.
y0 = initial position.
v0 = initial velocity.
t = time.
g = acceleration due to gravity.
Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.
Then, after 2 seconds, the height of the object will be -30 m:
y = y0 + v0 · t + 1/2 · g · t²
-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²
-30 m = 1/2 · g · 4 s²
-30 m = 2 s ² · g
-30 m/2 s² = g
g = -15 m/s²
Then, the magnitude of the gravitational force will be:
F = m · g
F = 5 kg · 15 m/s²
F = 75 N
The gravitational force exerted on the object is 75 N (answer D)
Have a nice day!
Answer:
F4.0
Explanation:
To obtain a shutter speed of 1/1000 s to avoid any blur motion the f-number should be changed to F4.0 because the light intensity goes up by a factor of 2 when the f-number is decreased by the square root of 2.
Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.