answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
1 year ago
7

It's a snowy day and you're pulling a friend along a level road on a sled. You've both been taking physics, so she asks what you

think the coefficient of friction between the sled and the snow is. You've been walking at a steady 1.5\;{\rm m}/{\rm s}, and the rope pulls up on the sled at a 42.0^\circ angle. You estimate that the mass of the sled, with your friend on it, is 73.0 kg and that you're pulling with a force of 87.0 N.?

Physics
1 answer:
Juli2301 [7.4K]1 year ago
5 0

Answer:

0.0984

Explanation:

From the first diagram attached below; a free flow diagram shows the interpretation of this question which will be used  to solve this question.

From the diagram, the horizontal component of the force is:

F_X = F_{cos \ \theta}

Replacing 42°  for θ and 87.0° for F

F_X =87.0 \ N \ *cos \ 42 ^\circ

F_X =64.65 \ N

On the other hand, the vertical component  is ;

F_Y = Fsin \ \theta

Replacing 42°  for θ and 87.0° for F

F_Y =87.0 \ N \ *sin \ 42 ^\circ

F_Y =58.21  \ N

However, resolving the vector, let A be the be the component of the mutually perpendicular directions.

The magnitude of the two components is shown in the second attached diagram below and is now be written as A cos θ and A sin θ

The expression for the frictional force is expressed as follows:

f = \mu \ N

Where;

\mu is said to be the coefficient of the friction

N = the  normal force

Similarly the normal reaction (N) = mg - F sin θ

Replacing F_Y \ for \ F_{sin \  \theta}. The normal reaction can now be:

N = mg \ - \ F_Y

By balancing the forces, the horizontal component of the force equals to frictional force.

The horizontal component of the force is given as follows:

F_X = \mu \ ( mg - \ F_Y)

Making \mu the subject of the formular in the above equation; we have the following:

\mu \ = \ \frac{F_X}{mg - F_Y}

Replacing the following values: i.e

F_X \ = \ 64.65 \  N

m = 73 Kh

g  = 9.8 m/s²

F_Y = \ 58.21 N

Then:

\mu \ = \ \frac{64.65 N}{(73.0 kg)(9.8m/s^2) - (58.21 \ N)}

\mu = 0.0984

Thus, the coefficient of friction is = 0.0984

You might be interested in
A ball of mass 0.4 kg is initially at rest on the ground. It is kicked and leaves the kicker's foot with a speed of 5.0 m/s in a
yawa3891 [41]

Answer:

the answer the correct  is 3

Explanation:

Let's use the relationship between momentum and momentum

         I = Δp

         I = m v_{f} - m v₀

     

Let's calculate

         I = 0.4 5.0 - 0

         I = 2.0 N s

By Newton's law of action and reaction the force on the ball is equal to the force that the ball exerts on the foot, therefore the impulse on the foot of equal magnitude, but in the opposite direction

        I = 2.0 Ns with 60°

When reviewing the answer the correct  is 3

4 0
2 years ago
Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
Masja [62]

Answer:

1.10261 times g

416.17506 mph

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow 400=0\times 8.6+\frac{1}{2}\times a\times 8.6^2\\\Rightarrow a=\frac{400\times 2}{8.6^2}\\\Rightarrow a=10.81665\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{10.81665}{9.81}\\\Rightarrow \dfrac{a}{g}=1.10261\\\Rightarrow a=1.10261g

The acceleration is 1.10261 times g

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 10.81665\times 1.6\times 10^3+0^2}\\\Rightarrow v=186.04644\ m/s

In mph

186.04644\times \dfrac{3600}{1609.34}=416.17506\ mph

The speed of the dragster is 416.17506 mph

5 0
2 years ago
Which statement about energy conservation BEST explains why a bouncing basketball will not remain in motion forever?
bearhunter [10]

Answer: d

Explanation:

7 0
1 year ago
How much force is required to drag a 90 lb. box up this "frictionless" inclined plane? 109 lb. 10 lb. 81 lb. 9 lb.
MrRissso [65]
I believe is 10 lb if not it's 9 lb.
5 0
2 years ago
Read 2 more answers
Four electrons are located at the corners of a square 10.0 nm on a side, with an alpha particle at its midpoint. How much work i
Elis [28]

Four electrons are placed at the corner of a square

So we will first find the electrostatic potential at the center of the square

So here it is given as

V = 4\frac{kQ}{r}

here

r = distance of corner of the square from it center

r = \frac{a}{\sqrt2}

r = \frac{10nm}{\sqrt2} = 7.07 nm

Q = e = -1.6 * 10^{-19} C

now the net potential is given as

V = \frac{4 * 9*10^9 * (-1.6 * 10^{-19})}{7.07 * 10^{-9}}

V = 0.815 V

now potential energy of alpha particle at this position

U_i = qV = 2*1.6 * 10^{-19} * (-0.815) = -2.6 * 10^{-19} J

Now at the mid point of one of the side

Electrostatic potential is given as

V = 2\frac{kQ}{r_1} + 2\frac{kQ}{r_2}

here we know that

r_1 = \frac{a}{2} = 5 nm

r_2 = \sqrt{(a/2)^2 + a^2} = \frac{\sqrt5 a}{2}

r_2 = 11.2 nm

now potential is given as

V = 2\frac{9 * 10^9 * (-1.6 * 10^{-19})}{5 * 10^{-9}} + 2\frac{9*10^9 * (-1.6 * 10^{-19})}{11.2 * 10^{-9}}

V = -0.576 - 0.257 = -0.833 V

now final potential energy is given as

U_f = q*V = 2*1.6 * 10^{-19}* (-0.833) = -2.67 * 10^{-19} J

Now work done in this process is given as

W = U_f - U_i

W = (-0.267 * 10^{-19}) - (-0.26 * 10^{-19}}

W = -7 * 10^{-22} J

8 0
1 year ago
Other questions:
  • What is a limitation of the electron cloud model theory that a law about electrons would not have?
    11·2 answers
  • You are installing a new spark plug in your car, and the manual specifies that it be tightened to a torque that has a magnitude
    14·1 answer
  • A rubber band has potential energy of 5 J. If the spring constant of the rubber band is 50 N/m, what is the displacement of the
    8·2 answers
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar. In a survey conduc
    14·1 answer
  • The strength of the electric field at a certain distance from a point charge is represented by E. What is the strength of the el
    14·1 answer
  • (8%) Problem 9: Helium is a very important element for both industrial and research applications. In its gas form it can be used
    8·1 answer
  • What speed would a fly with a mass of 0.55g need in order to have a kinetic energy of 7.6 •10^4 j?
    12·1 answer
  • A ball bearing of radius of 1.5 mm made of iron of density
    11·1 answer
  • Marissa researched the cost to have custom T-shirts printed by several local and online vendors. She found that each store’s cha
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!