answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
11

Sound travels at a speed of 1188 km in one hour. How many meters will it travel in one second?

Physics
2 answers:
Nana76 [90]2 years ago
7 0
The answer to this question would be 330 m/sec
Darya [45]2 years ago
7 0

Answer: 330 m

Explanation:

Do some unit conversion.

\frac{1188 km}{1 hr} *\frac{1 hr}{3600 s} \\ = 0.33 km/s.

So in 1 second, it will travel 0.330 km, or 330 m.

You might be interested in
The position of an object that is oscillating on an ideal spring is given by the equation x=(12.3cm)cos[(1.26s−1)t]. (a) at time
Natali5045456 [20]
<span>x=((12.3/100)m)cos[(1.26s^−1)t]
 v= dx/dt = -</span><span>((12.3/100)*1.26)sin[(1.26s^−1)t]
 v=</span>-((12.3/100)*1.26)sin[(1.26s^−1)t]=-((12.3/100)*1.26)sin[(1.26s^−1)*(0.815)]
 v=<span> <span>-0.13261622 m/s
 </span></span>the object moving at  0.13 m/s <span>at time t=0.815 s</span>
6 0
2 years ago
calculate the workdone to stretch an elastic string by 40cm if a force of 10N produces an extension of 4cm in it
Lera25 [3.4K]
The force of F=10 N produces an extension of
x=4 cm=0.04 m
on the string, so the spring constant is equal to
k= \frac{F}{x}= \frac{10 N}{0.04 m}=250 N/m

Then the string is stretched by \Delta x=40 cm=0.40 m. The work done to stretch the string by this distance is equal to the variation of elastic potential energy of the string with respect to its equilibrium position:
W= \Delta U= \frac{1}{2}k(\Delta x)^2  = \frac{1}{2}(250 N/m)(0.40 m)^2=20 J
5 0
2 years ago
In the middle of the night you are standing a horizontal distance of 14.0 m from the high fence that surrounds the estate of you
olchik [2.2K]

PART A)

horizontal distance that will be moved = 14 m

Height of the fence = 5.0 m

height from which it is thrown = 1.60 m

angle of projection = 54 degree

So here we can say that stone will travel vertically up by distance

\Delta y = 5 - 1.6 = 3.40 m

now we will have displacement in horizontal direction

\Delta x = 14 m

now we know that

v_x = vcos54

v_y = vsin54

now we will have

\Delta x = v_x t

14 = (vcos54)t

also for y direction

\Delta y = v_y t + \frac{1}{2}at^2

3.40 = (vsin54)t - \frac{1}{2}(9.8) t^2

now from the two equations we will have

3.40 = (vsin54)(\frac{14}{vcos54}) - 4.9 t^2

3.40 = 14 tan54 - 4.9 t^2

3.40 = 19.3 - 4.9 t^2

t = 1.8 s

now from above equations

14 = vcos54 (1.8)

v = 13.2 m/s

So the minimum speed will be 13.2 m/s

Part B)

Total time of the motion after which it will land on the ground will be "t"

so its vertical displacement will be

\Delta y = -1.60 m

now we will have

-1.60 = v_y t + \frac{1}{2}at^2

-1.60 = (13.2sin54)t - \frac{1}{2}(9.8)t^2

4.9 t^2 - 10.7t - 1.60 = 0

t = 2.3 s

Now the time after which it will reach the fence will be t1 = 1.8 s

so total time after which it will fall on other side of fence

t_2 = t - t_1

t_2 = 2.3 - 1.8 = 0.5 s

now the displacement on the other side is given as

\Delta x = (vcos54) t_2

\Delta x = (13.2 cos54)(0.5)

\Delta x = 3.88 m

4 0
2 years ago
30) A force produces power P by doing work W in a time T. What power will be produced by a force that does six times as much wor
schepotkina [342]

Answer:

A) 12P

Explanation:

The power produced by a force is given by the equation

P=\frac{W}{T}

where

W is the work done by the force

T is the time in which the work is done

At the beginning in this problem, we have:

W = work done by the force

T = time taken

So the power produced is

P=\frac{W}{T}

Later, the force does six times more work, so the work done now is

W'=6W

And this work is done in half the time, so the new time is

T'=\frac{T}{2}

Substituting into the equation of the power, we find the new power produced:

P'=\frac{W'}{T'}=\frac{6W}{T/2}=12\frac{W}{T}=12P

So, 12 times more power.

4 0
2 years ago
A 5 kg object near Earth's surface is released from rest such that it falls a distance of 10 m. After the object falls 10 m, it
makkiz [27]

Answer:D

Explanation:

Given

mass of object m=5 kg

Distance traveled h=10 m

velocity acquired v=12 m/s

conserving Energy at the moment when object start falling and when it gains 12 m/s velocity

Initial Energy=mgh=5\times 9.8\times 10=490 J

Final Energy=\frac{1}{2}mv^2+W_{f}

=\frac{1}{2}\cdot 5\cdot 12^2+W_{f}

where W_{f} is friction work if any

490=360+W_{f}

W_{f}=130 J

Since Friction is Present therefore it is a case of Open system and net external Force is zero

An open system is a system where exchange of energy and mass is allowed and Friction is acting on the object shows that system is Open .

4 0
2 years ago
Other questions:
  • The first thing to focus on when creating a workout plan is
    7·2 answers
  • A car drives around a racetrack for 30 seconds. what do you need to know to calculate the average velocity of the car?
    9·2 answers
  • A spherical balloon is 40 ft in diameter and surrounded by air at 60°F and 29.92 in Hg abs.(a) If the balloon is filled with hyd
    6·2 answers
  • A net force of 125 n is applied to a certain object. as a result, the object accelerates with an acceleration of 24.0 m/s2. the
    12·2 answers
  • Starting with only the Balmer series light (visible light), how could we ensure that the solar panels generate a current that Ma
    14·2 answers
  • A football player kicks a 0.41-kg football initially at rest; and the ball flies through the air. If the kicker's foot was in co
    5·1 answer
  • If you lived on Saturn, which planets would exhibit retrograde motion like that observed for Mars from Earth? (Select all that a
    12·1 answer
  • A certain plucked string produces a fundamental frequency of 150 hz. Which frequency is not one of the harmonics produced by tha
    8·1 answer
  • During the class prize-giving ceremony, Anand clapped his hands hard while Kumar clapped his hands softly. Everybody could hear
    6·1 answer
  • Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!