The turning moment on the cover of the book is 0.05 Nm.
Explanation:
Given:
Force applied (F) = 0.5 N
Distance covered (d) = 10 cm
Converting Distance covered from cm to meter we get (d)= 0.1 m
To find:
Turning Moment (M) on the cover of the book = ?
Formula to be used:
Turning Moment (M) = F × d
= 0.5 × 0.1
= 0.05 Nm
Thus the turning moment on the cover of the book is found to be 0.05 Nm
Answer:
Honda won by 0.14 s
Explanation:
We are given that
Distance =S=200 m
Initial velocity of Honda=u=0m/s
Initial velocity of Porsche=u'=0m/s
Acceleration of Honda=
Acceleration of Porsche's=
Time taken by Honda to start=1 s

Substitute the values




Time taken by Honda=11.55 s
Now, time taken by Porsche



Total time taken by Porsche=10.69+1=11.69 s
Because it start 1 s late
Time taken by Honda is less than Porsche .Therefore, Honda won and
Time =11.69-11.55=0.14 s
Honda won by 0.14 s
To
solve this problem, we assume that the wavelength of the light in air is 500
nanometers.
For this case we
only need the refractive index of the polystyrene. For an antireflective
coating, we need a quarter of wave thickness at the wavelength in the air. Which
means that the antireflective coating needs to be as thick as 1/4 of the
wavelength, divided by the coating’s refractive index. This is expressed
mathematically in the form:
x = λ / (4 * n)
where,
x = thickness
λ = wavelength
of light
n = index of
refraction of polystyrene
Substituting:
x = 500 nm / (4
* 1.49)
x = 500 nm / 5.96
x = 83.90 nm
Answer:
Weight W = 392.4 N
Density
= 784.31 
Specific gravity S = 0.78431
Force required F = 10 N
Explanation:
Given data
Mass (m) = 40 kg
Volume (V) = 0.051 
Weight W = m × g
⇒ W = 40 × 9.81
⇒ W = 392.4 N
This is the weight of the methanol.
Density
= 
⇒
= 
⇒
= 784.31 
This is the density of the methanol.
Specific gravity (S) = 
⇒ 
⇒ S = 0.78431
This is the specific gravity of the methanol.
Force needed to accelerate this tank F = ma
⇒ F = 40 × 0.25
⇒ F = 10 N
This is the force required to accelerate the tank.