answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masha68 [24]
2 years ago
9

What is the average velocity of atoms in 1.50 mol of neon (a monatomic gas) at 278 K? For m, use 0.01500 kg. Remember that R = 8

.31 J/(molK).
A. 9610 m/s
B. 832 m/s
C. 6.93 m/s
D. 693,000 m/s
Physics
2 answers:
bekas [8.4K]2 years ago
5 0

Answer:

B. 832 m/s

Explanation:

(1/2) (0.015) v^2 = (3/2) (1.5) (8.31) (278)

0.0075 v^2 = 5197.905

v^2 = 693054

v = 832.49

tatiyna2 years ago
3 0

Answer: 832m/s

Explanation:

You might be interested in
The position of an object that is oscillating on an ideal spring is given by the equation x=(12.3cm)cos[(1.26s−1)t]. (a) at time
Natali5045456 [20]
<span>x=((12.3/100)m)cos[(1.26s^−1)t]
 v= dx/dt = -</span><span>((12.3/100)*1.26)sin[(1.26s^−1)t]
 v=</span>-((12.3/100)*1.26)sin[(1.26s^−1)t]=-((12.3/100)*1.26)sin[(1.26s^−1)*(0.815)]
 v=<span> <span>-0.13261622 m/s
 </span></span>the object moving at  0.13 m/s <span>at time t=0.815 s</span>
6 0
2 years ago
Robin Hood wishes to split an arrow already in the bull's-eye of a target 40 m away.
tamaranim1 [39]

Answer:

5.843 m

Explanation:

suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.

lets consider that horizontal motion

distance = speed * time

time = 40/ 37 = 1.081 s

arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.

applying motion equation

(assume g = 10 m/s²)

s=ut+\frac{1}{2}*gt^{2}  \\= 0+\frac{1}{2}*10*1.081^{2}\\= 5.843 m

Arrow misses the target by 5.843m ig the arrow us split horizontally

4 0
2 years ago
An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined
MrRa [10]

Incomplete question as the car's  speed is missing.I have assumed car's  speed as 6.0m/s.The complete question is here

An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 6.00 kN, and the radius of the circle is 15.0 m. At the top of the circle, (a) what is the force FB on the car from the boom (using the minus sign for downward direction) if the car's speed is v 6.0m/s

Answer:

F_{B}=-5755N

Explanation:

Set up force equation

∑F=ma

∑F=W+FB

\frac{mv^{2} }{R}=W+F_{B}\\  F_{B}=\frac{mv^{2} }{R}-W\\F_{B}=\frac{(W/g)v^{2} }{R}-W\\F_{B}=\frac{(6000N/9.8m/s^{2} )(6m/s)^{2} }{(15m)}-6000N\\F_{B}=-5755N

The minus sign for downward direction

6 0
2 years ago
An empty container is filled with helium to a pressure P at a temperature T. Neon, which has atoms that are 5 times more massive
Law Incorporation [45]

Answer:

I got the same test question I picked c

4 0
2 years ago
Read 2 more answers
Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the proba
lions [1.4K]

Answer:

a) Probability mass function of x

x P(X=x)

0 0.0602

1 0.0908

2 0.1700

3 0.2050

4 0.1800

5 0.1550

6 0.0843

7 0.0390

8 0.0147

b) Cumulative Distribution function of X

x F(x)

0 0.0602

1 0.1510

2 0.3210

3 0.5260

4 0.7060

5 0.8610

6 0.9453

7 0.9843

8 1.0000

The cumulative distribution function gives 1.0000 as it should.

Explanation:

Probability of arriving late = 0.43

Probability of coming late = 0.57

Let's start with the probability P(X=0) that exactly 0 people arrive late, the probability P(X=1) that exactly 1 person arrives late, the probability P(X=2) that exactly 2 people arrive late, and so on up to the probability P(X=8) that 8 people arrive late.

Interpretation(s) of P(X=0)

The two singles must arrive on time, and the three couples also must. It follows that P(X=0) = (0.57)⁵ = 0.0602

Interpretation(s) of P(X=1)

Exactly 1 person, a single, must arrive late, and all the rest must arrive on time. The late single can be chosen in 2 ways. The probabiliy that (s)he arrives late is 0.43.

The probability that the other single and the three couples arrive on time is (0.57)⁴

It follows that

P(X=1) = (2)(0.43)(0.57)⁴ = 0.0908

Interpretation(s) of P(X=2)

Two late can happen in two different ways. Either (i) the two singles are late, and the couples are on time or (ii) the singles are on time but one couple is late.

(i) The probability that the two singles are late, but the couples are not is (0.43)²(0.57)³

(ii) The probability that the two singles are on time is (0.57)²

Given that the singles are on time, the late couple can be chosen in 3 ways. The probability that it is late is 0.43 and the probability the other two couples are on time is (0.57)².

So the probability of (ii) is (0.57)²(3)(0.43)(0.57)² which looks better as (3)(0.43)(0.57)⁴ It follows that

P(X=2) = (0.43)²(0.57)³ + (3)(0.43)(0.57)⁴ = 0.0342 + 0.136 = 0.1700

Interpretations of P(X=3).

Here a single must arrive late, and also a couple. The late single can be chosen in 2 ways. The probability the person is late but the other single is not is (0.43)(0.57).

The late couple can be chosen in 3 ways. The probability one couple is late and the other two couples are not is (0.43)(0.57)². Putting things together, we find that

P(X=3) = (2)(3)(0.43)²(0.57)³ = 0.2050

Interpretation(s) P(X=4)

Since we either (i) have the two singles and one couple late, or (ii) two couples late. So the calculation will break up into two cases.

(i) Two singles and one couple late

Two singles' probability of being late = (0.43)² and One couple being late can be done in 3 ways, so its probability = 3(0.43)(0.57)²

(ii) Two couples late, one couple and two singles early

This can be done in only 3 ways, and its probability is 2(0.57)³(0.43)²

P(X=4) = (3)(0.43)³(0.57)² + (3)(0.57)³(0.43)² = 0.0775 + 0.103 = 0.1800

Interpretations of P(X=5)

For 5 people to be late, it has to be two couples and 1 single person.

For couples, The two late couples can be picked in 3 ways. Probability is 3(0.43)²(0.57)

The late single person can be picked in two ways too, 2(0.43)(0.57)

P(X=5) = 2(3)(0.43)³(0.57)² = 0.1550

Interpretations of P(X=6)

For 6 people to be late, we have either (i) the three couples are late or (ii) two couples and the two singles.

(i) Three couples late with two singles on time = (0.43)³(0.57)²

(ii) Two couples and two singles late

Two couples can be selected in 3 ways, so probability = 3(0.43)²(0.57)(0.43)²

P(X=6) = (0.43)³(0.57)² + 3(0.43)⁴(0.57) = 0.0258 + 0.0585 = 0.0843

Interpretation(s) of P(X=7)

For 7 people to be late, it has to be all three couples and only one single (which can be picked in two ways)

P(X=7) = 2(0.57)(0.43)⁴ = 0.0390

Interpretations of P(X=8)

Everybody had to be late

P(X=8) = (0.43)⁵ = 0.0147

6 0
2 years ago
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • Russ makes the diagram below to organize his notes about how Newton’s first law describes objects at equilibrium.
    13·2 answers
  • A woman takes her dog Rover for a walk on a leash. To get the little pooch moving forward, she pulls on the leash with a force o
    8·1 answer
  • The field B = −2ax + 3ay + 4az mT is present in free space. Find the vector force exerted on a straight wire carrying 12 A in th
    6·1 answer
  • A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
    9·1 answer
  • A plastic cube with a coin taped to its top surface is floating partially submerged in water. A student marks the level of the w
    8·1 answer
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
  • a horse gallops a distance of 60 meters in 15 seconds. then, he stops to eat some grass for 20 seconds. next, he trots for 25 se
    5·1 answer
  • .A 0.6 kg basketball is thrown straight up at a velocity of 4 m/s. What is the initial kinetic energy of the basketball?
    15·1 answer
  • Water runs through a plumbing with a flow of 0.750m3/s and arrives to every exit of a fountain. At what speed will the water com
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!