Answer:
<h2>5.6kW</h2>
Explanation:
Step one:
given
mass m= 24kg
distance moved= 6m
time taken= 4seconds
Step two:
Required
power
but work done is the force applied at a distance, and the power is the work done time the time taken
Work done= F*D
F=mg
W= mg*D
W=24*9.81*6
W=1412.6J
Power P= work * time
P=1412.6*4
p=5650.5W
P=5.6kW
Answer:
Explanation:
Expression for escape velocity
ve = 
ve² R / 2 = GM
M is mass of the planet , R is radius of the planet .
At distance r >> R , potential energy of object
= 
Since the object is at rest at that point , kinetic energy will be zero .
Total mechanical energy =
+ 0 = 
Putting the value of GM = ve² R / 2
Total mechanical energy = ve² Rm / 2 r
This mechanical energy will be conserved while falling down on the earth due to law of conservation of mechanical energy . So at surface of the earth , total mechanical energy
= ve² Rm / 2 r
Answer:
0.4 A
Explanation:
From the question,
Electric power = Voltage×current
P = VI.......................... Equation 1
Make I the subject of the equation
I = P/V..................... Equation 2
Given: P = 96 J/s, V = 230 V.
Substitute into equation 2
I = 96/230
I = 0.4 A.
Hence the current is 0.4 A
Answer:
Spring constant, k = 0.3 N/m
Explanation:
It is given that,
Force acting on DNA molecule, 
The molecule got stretched by 5 nm, 
Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :



k = 0.3 N/m
So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.
Answer: 0.24g/ml
Explanation:
Given that:
Volume of water displaced = 23.5 ml
Mass of cork = 5.7 g
Density of the cork = ?
Recall that density is obtained by dividing the mass of a substance by the volume of water displaced.
i.e Density = Mass/volume
Density = 5.7g /23.5ml
Density = 0.24g/ml
Thus, the density of the piece of cork is 0.24g/ml