answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
2 years ago
8

A chemist fills a reaction vessel with 0.750 M lead (II) (Pb2+) aqueous solution, 0.232 M bromide (Br) aqueous solution, and 0.9

56 g lead (II) bromide (PbBr2 solid at a temperature of 25.0°C. Under these conditions, calculate the reaction free energy AG for the following chemical reaction: Pb2+ (aq) + 2Br (aq) = PbBr2 (s) Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.
Chemistry
1 answer:
Ronch [10]2 years ago
8 0

Answer:

The free energy = -20.46 KJ

Explanation:

given Data:

Pb²⁺ = 0.750 M

Br⁻ = 0.232 M

R = 8.314 Jk⁻¹mol⁻¹

T = 298K

The Gibb's free energy is calculated using the formula;

ΔG = ΔG° + RTlnQ -------------------------1

Where;

ΔG° = standard Gibb's freeenergy

R = Gas constant

Q = reaction quotient

T = temperature

The chemical reaction is given as;

Pb²⁺(aq) + 2Br⁻(aq) ⇄PbBr₂(s)

The ΔG°f are given as:

ΔG°f (PbBr₂)  = -260.75 kj.mol⁻¹

ΔG°f (Pb²⁺)   = -24.4 kj.mol⁻¹

ΔG°f (2Br⁻)    = -103.97 kj.mol⁻¹

Calculating the standard gibb's free energy using the formula;

ΔG° = ξnpΔG°(product) - ξnrΔG°(reactant)

Substituting, we have;

ΔG° =[1mol*ΔG°f (PbBr₂)] - [1 mol *ΔG°f (Pb²⁺) +2mol *ΔG°f (2Br⁻)]

ΔG° =(1 *-260.75 kj.mol⁻¹) - (1* -24.4 kj.mol⁻¹) +(2*-103.97 kj.mol⁻¹)

      = -260.75 + 232.34

     = -28.41 kj

Calculating the reaction quotient Q using the formula;

Q = 1/[Pb²⁺ *(Br⁻)²]

   = 1/(0.750 * 0.232²)

  = 24.77

Substituting all the calculated values into equation 1, we have

ΔG = ΔG° + RTlnQ

ΔG = -28.41 + (8.414*10⁻³ * 298 * In 24.77)

     = -28.41 +7.95

    = -20. 46 kJ

Therefore, the free energy of reaction = -20.46 kJ

You might be interested in
That's just the tip of the iceberg" is a popular expression you may have heard. It means that what you can see is only a small p
puteri [66]
Answer:

B 1.23 g/cc

Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.

Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.

A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.

B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.

C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.

D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
5 0
2 years ago
A sample that weighs 103.75 g is a mixture of 30% helium atoms and 70% krypton atoms. How many particles are present in the samp
aalyn [17]
1) we calculate the molar mass of He (helium) and Kr (Krypton).
atomic mass (He)=4 u
atomic mas (Kr)=83.8 u

Therefore the molar mass will be:
molar mass(He)=4 g/mol
molar mass(Kr)=83.8 g/mol.

1) We can find  the next equation:
mass=molar mass  x number of moles.

x=number of moles of helium
y=number of moles of helium. 

(4 g/mol) x  +(83.8 g/mol)y=103.75 g
Therefore, we have the next equation:

(1)

4x+83.8y=103.75


2) We can find other equation:

We have 30% helium atoms and 70% Kryptum atoms, therefore we have 30% Helium moles and 70% of Krypton moles.

1 mol  is always 6.022 * 10²³ atoms or molecules, (in this case atoms).

Then:
x=number of moles of helium
y=number of moles of helium.
(x+y)=number of moles of our sample.

x=30% of (x+y)

Therefore, we have this other equation:
(2)

x=0.3(x+y)


With the equations(1) and (2), we have the next system of equations:

4x+83.8y=103.75

x=0.3(x+y)  ⇒ x=0.3x+0.3y  ⇒    x-0.3x=0.3y  ⇒ 0.7 x=0.3y ⇒ x=0.3y/0.7
⇒x=3y/7

We solve this system of equations by substitution method.
x=3y/7

4(3y/7)+83.8y=103.75
lower common multiple)7
12y+586.6y=726.25
598.6y=726.25
y=1.21

x=3y/7=3(1.21)/7=0.52

We have 0.52 moles of  helium and 1.21 moles of Krypton.

1 mol=6.022 * 10²³ atoms

Total number of particles=(6.022 *10²³ atoms /1 mol) (number of moles of He+ number of moles of Kr).

Total number of particles=6.022 * 10²³ (0.52+1.21)=6.022 * 10²³ (1.73)=
=1.044 * 10²⁴ atoms.

Answer: The sample have 1.044 * 10²⁴ atoms.
6 0
2 years ago
Read 2 more answers
Based on the results of this lab, write a short paragraph that summarizes how to distinguish physical changes from chemical chan
Kaylis [27]

Physical changes occur when the properties of a substance are retained and/or the materials can be recovered after the change. Chemical changes involve the formation of a new substance. Formation of a gas, solid, light, or heat are possible evidence of chemical change.

6 0
2 years ago
Read 2 more answers
Some hydrogen gas is enclosed within a chamber being held at 200∘C∘C with a volume of 0.0250 m3m3. The chamber is fitted with a
Semenov [28]

Answer:

The final volume is 39.5 L = 0.0395 m³

Explanation:

Step 1: Data given

Initial temperature = 200 °C = 473 K

Volume = 0.0250 m³ = 25 L

Pressure = 1.50 *10^6 Pa

The pressure reduce to 0.950 *10^6 Pa

The temperature stays constant at 200 °C

Step 2: Calculate the volume

P1*V1 = P2*V2

⇒with P1 = the initial pressure = 1.50 * 10^6 Pa

⇒with V1 = the initial volume = 25 L

⇒with P2 = the final pressure = 0.950 * 10^6 Pa

⇒with V2 = the final volume = TO BE DETERMINED

1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2

V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)

V2 = 39.5 L = 0.0395 m³

The final volume is 39.5 L = 0.0395 m³

3 0
2 years ago
What does the oxidizing agent do in a redox reaction apex?
densk [106]
Same as balancing a regular chemical reaction! Please see the related question to the bottom of this answer for how to balance a normal chemical reaction. This is for oxidation-reduction, or redox reactions ONLY! These instructions are for how to balance a reduction-oxidation, or redox reaction in aqueous solution, for both acidic and basic solution. Just follow these steps! I will illustrate each step with an example. The example will be the dissolution of copper(II) sulfide in aqueous nitric acid, shown in the following unbalanced reaction: CuS (s) + NO 3 - (aq) ---> Cu 2+ (aq) + SO 4 2- (aq) + NO (g) Step 1: Write two unbalanced half-reactions, one for the species that is being oxidized and its product, and one for the species that is reduced and its product. Here is the unbalanced half-reaction involving CuS: CuS (s) ---> Cu 2+ (aq) + SO 4 2- (aq) And the unbalanced half-reaction for NO 3 - is: NO 3 - (aq) --> NO (g) Step 2: Insert coefficients to make the numbers of atoms of all elements except oxygen and hydrogen equal on the two sides of each half-reaction. In this case, copper, sulfur, and nitrogen are already balanced in the two half-reaction, so this step is already done here. Step 3: Balance oxygen by adding H 2 O to one side of each half-reaction. CuS + 4 H 2 O ---> Cu 2+ + SO 4 2- NO 3 - --> NO + 2 H 2 O Step 4: Balance hydrogen atoms. This is done differently for acidic versus basic solutions. . For acidic solutions: Add H 3 O + to each side of each half-reaction that is "deficient" in hydrogen (the side that has fewer H's) and add an equal amount of H 2 O to the other side. For basic solutions: add H 2 O to the side of the half-reaction that is "deficient" in hydrogen and add an equal amount of OH - to the other side. Note that this step does not disrupt the oxygen balance from Step 3. In the example here, it is in acidic solution, and so we have: CuS + 12 H 2 O ---> Cu 2+ + SO 4 2- + 8 H 3 O + . NO 3 - + 4 H 3 O + --> NO + 6 H 2 O Step 5: Balance charge by inserting e - (electrons) as a reactant or product in each half-reaction. Oxidation: CuS + 12 H 2 O ---> Cu 2+ + SO 4 2- + 8 H 3 O + + 8 e - . Reduction: NO 3 - + 4 H 3 O + + 3 e - --> NO + 6 H 2 O . Step 6: Multiply the two half-reactions by numbers chosen to make the number of electrons given off by the oxidation step equal to the number taken up by the reduction step. Then add the two half-reactions. If done correctly, the electrons should cancel out (equal numbers on the reactant and product sides of the overall reaction). If H 3 O + , H 2 O, or OH - appears on both sides of the final equation, cancel out the duplication also. Here the oxidation half-reaction must be multiplied by 3 (so that 24 electrons are produced) and the reduction half-reaction must by multiplied by 8 (so that the same 24 electrons are consumed). 3 CuS + 36 H 2 O ---> 3 Cu 2+ + 3 SO 4 2- + 24 H 3 O + + 24 e - 8 NO 3 - + 32 H 3 O + + 24 e - ---> 8 NO + 48 H 2 O Adding these two together gives the following equation: 3 CuS + 36 H 2 O + 8 NO 3 - + 8 H 3 O + ---> 3 Cu 2+ + 3 SO 4 2- + 8 NO + 48 H 2 O Step 7: Finally balancing both sides for excess of H 2 O (On each side -36) This gives you the following overall balanced equation at last: 3 CuS (s) + 8 NO 3 - (aq) + 8 H 3 O + (aq) ---> 3 Cu 2+ (aq) + 3 SO 4 2- (aq) + 8 NO (g) + 12 H 2 O (l)


6 0
2 years ago
Read 2 more answers
Other questions:
  • How many quarters fit in a 1.75 liter bottle?
    8·2 answers
  • A sample of solid sodium hydroxide, weighing 13.20 grams is dissolved in deionized water to make a solution. What volume in mL o
    8·1 answer
  • Mendeleev placed thallium (Tl) in the same group as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). Ho
    11·1 answer
  • A sample of a solid labeled as NaCl may be impure. a student analyzes the sample and determines that it contains 75 percent chlo
    6·1 answer
  • . Hemoglobin (Hb) and oxygen gas form a complex (HbO2) that carries oxygen throughout the human body. Unfortunately, carbon mono
    10·1 answer
  • Which of the following correctly describes the process of inspiration (air entering the lungs).
    7·1 answer
  • Jared sprayed a pesticide on his garden three times. The first time, many insects died. The second time fewer insects died. The
    11·2 answers
  • 50 kg of N2 gas and 10kg of H2 gas are mixed to produce NH3 gas calculate the NH3gas formed. Identify the limiting reagent in th
    6·2 answers
  • A 1.555-g sample of baking soda decomposes with heat to produce 0.991 g Na2CO3. Refer to Example Exercise 14.l and show the calc
    10·1 answer
  • What amount of SeC16 is needed to produce 4.45 mol of chlorine gas in the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!