Barfoed's test is a concoction test utilized for identifying the nearness of monosaccharides. It depends on the diminishment of copper(II) acetic acid derivation to copper(I) oxide (Cu2O), which frames a block red hasten.
Barfoed's reagent comprises of a 0.33 molar arrangement of unbiased copper acetic acid derivation in 1% acidic corrosive arrangement. The reagent does not keep well and it is, thusly, fitting to make it up when it is really required. May store uncertainly as per a few MSDS's.
Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
Answer:
3.24 × 10^5 J/mol
Explanation:
The activation energy of this reaction can be calculated using the equation:
ln(k2/k1) = Ea/R x (1/T1 - 1/T2)
Where; Ea = the activation energy (J/mol)
R = the ideal gas constant = 8.3145 J/Kmol
T1 and T2 = absolute temperatures (K)
k1 and k2 = the reaction rate constants at respective temperature
First, we need to convert the temperatures in °C to K
T(K) = T(°C) + 273.15
T1 = 325°C + 273.15
T1 = 598.15K
T2 = 407°C + 273.15
T2 = 680.15K
Since, k1= 8.58 x 10-9 L/mol, k2= 2.16 x 10-5 L/mol, R= 8.3145 J/Kmol, we can now find Ea
ln(k2/k1) = Ea/R x (1/T1 - 1/T2)
ln(2.16 x 10-5/8.58 x 10-9) = Ea/8.3145 × (1/598.15 - 1/680.15)
ln(2517.4) = Ea/8.3145 × 2.01 × 10^-4
7.831 = Ea(2.417 × 10^-5)
Ea = 3.24 × 10^5 J/mol
Answer : The Lewis-dot structure and resonating structure of
is shown below.
Explanation :
Resonance structure : Resonance structure is an alternating method or way of drawing a Lewis-dot structure for a compound.
Resonance structure is defined as any of two or more possible structures of the compound. These structures have the identical geometry but have different arrangements of the paired electrons. Thus, we can say that the resonating structure are just the way of representing the same molecule.
First we have to determine the Lewis-dot structure of
.
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons, nitrogen has '5' valence electrons and hydrogen has '1' valence electrons.
Therefore, the total number of valence electrons in
= 4 + 2(1) + 2(5) = 16
Now we have to determine the formal charge for each atom.
Formula for formal charge :

For structure 1 :



For structure 2 :



Answer: 3.69 × 10^27
Explanation:
Amount of energy required = 7.06 × 10^4 J
Frequency of microwave (f) = 2.88 × 10^10 s−1
Planck's constant (h) = 6.63 × 10^-34 Jᐧs/quantum
Recall ;
Energy of photon = hf
Therefore, energy of photon :
(6.63 × 10^-34)j.s× (2.88 × 10^10)s^-1
= 19.0944 × 10^(-34 + 10) = 19.0944×10^-24 J
Hence, number of quanta required :
(7.06 × 10^4)J / (19.0944 × 10^-24)J
= 0.369 × 10^(4 + 24) = 0.369×10^28
= 3.69 × 10^27