not enough information is given to determine the velocity of the object at time to=0.00s
Answer:
1) Charge chord resistance is 75 Ω
2) Charge chord resistance is 6.33 Ω
Explanation:
1) To answer the question, we note that the the formula voltage is found as follows;
V = IR
Therefore,

2) Where the voltage, V = 19.5 V and the current, I = 3.33 A, we have;
Initial resistance R₁ = 19.5 V/(3.33 A) = 5.86 Ω
However, to reduce the current to 1.6 A, we have;

Therefore, where the resistance is found by the sum of the total resistance we have;
= R₁ + Charge chord resistance
∴ 12.1875 = 5.86 + Charge chord resistance
Hence, charge chord resistance = 6.33 Ω
Answer:
Explanation:
One charge is situated at x = 1.95 m . Second charge is situated at y = 1.00 m
These two charges are situated outside sphere as it has radius of .365 m with center at origin. So charge inside sphere = zero.
Applying Gauss's theorem
Flux through spherical surface = charge inside sphere / ε₀
= 0 / ε₀
= 0 Ans .
Energy can change form, but the total amount of energy stays the same.
As the question is about changing in frequency of a wave for an observer who is moving relative to the wave source, the concept that should come to our minds is "
Doppler's effect."
Now the general formula of the Doppler's effect is:

-- (A)
Note: We do not need to worry about the signs, as everything is moving towards each other. If something/somebody were moving away, we would have the negative sign. However, in this problem it is not the issue.
Where,
g = Speed of sound = 340m/s.

= Velocity of the receiver/observer relative to the medium = ?.

= Velocity of the source with respect to medium = 0 m/s.

= Frequency emitted from source = 400 Hz.

= Observed frequency = 408Hz.
Plug-in the above values in the equation (A), you would get:


Solving above would give you,

= 6.8 m/s
The correct answer = 6.8m/s