answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesantik [10]
2 years ago
4

Match the sequence number with the energy transformations from the water behind a hydroelectric dam to the lighting of a light b

ulb.
1. rain falls, being trapped behind dams
2
2. energy transferred to home to power light bulb
1
3. turbines generate electrical energy
3
4. potential energy of water behind dam converted into kinetic energy by turning turbines
4
Physics
1 answer:
Soloha48 [4]2 years ago
4 0

Answer: 1: rain falls, being trapped behind dams

               2: potential energy of water behind dam converted into kinetic energy by turning turbines

                3: turbines generate electrical energy

                 4: energy transferred to home to power light bulb

Explanation:

You might be interested in
A runner runs 4875 ft in 6.85 minutes. what is the runners average speed in miles per hour?
yanalaym [24]

The average speed can be easily calculated by taking the ratio of distance and time. That is:

average speed = distance / time

 

so calculating:

average speed = 4875 ft / 6.85 minutes

<span>average speed = 711.68 ft / min</span>

8 0
2 years ago
Read 2 more answers
The power rating of an electric lawn mower is 2000 watts if lawnmower is used for 120 seconds how many joules of work van it do
Scorpion4ik [409]
1 watt = 1 joule/sec

2,000 watts = 2,000 joules/sec

                     (2,000 joule/sec) x (120 sec)

                  = (2,000 x 120)  (joule-sec/sec)

                  =   240,000 joules .
        
4 0
2 years ago
An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte
aniked [119]

Answer:

35,79 meters

Explanation:

So, we got an archer, and we got a target. Lets call the distance between this two d.

Now, the archer fires the arrow, that, in a time t_{arrow} travels the distance d with a speed v_{arrow} of 40 m/s and hits the target. We can see that the equation will be:

v_{arrow} * t_{arrow} = d\\ \\40 \frac{m}{s} * t_{arrow} = d

Immediately after this, the arrow produces a muffled sound, which will travel the distance d at  340 m/s in a time t_{sound}. Obtaining :

v_{sound} * t_{sound} = d\\ \\340 \frac{m}{s} * t_{sound} = d.

Finally, the sound reaches the archer, exactly 1 second after he fired the bow, so:

t_{arrow} + t _{sound} = 1 s.

This equation allows us to write:

t _{sound} = 1 s - t_{arrow}.

Plugging this  relationship in the distance equation for the sound:

340 \frac{m}{s} * t_{sound} = d \\ \\ 340 \frac{m}{s} * (1 s- t_{arrow}) = d.

Now, we can replace d from the first equation, and obtain:

40 \frac{m}{s} * t_{arrow} = d \\ 40 \frac{m}{s} * t_{arrow} = 340 \frac{m}{s} * (1 s- t_{arrow}).

Now, we can just work a little bit:

40 \frac{m}{s} * t_{arrow} = 340 \frac{m}{s} * 1 s - 340 \frac{m}{s} * t_{arrow} \\ \\ 40 \frac{m}{s} * t_{arrow} + 340 \frac{m}{s} * t_{arrow} = 340 m \\ \\ 380 \frac{m}{s} * t_{arrow} = 340 m \\ \\ t_{arrow} = \frac{340 m}{380 \frac{m}{s}} \\ \\ t_{arrow} = 0.8947 s.

Now, we can just plug this value into the first equation:

40 \frac{m}{s} * t_{arrow} = d

40 \frac{m}{s} * 340/380 s = 35,79 s = d

6 0
2 years ago
A circular pipe of 25-mm outside diameter is placed in an airstream at 25C and 1-atm pressure. The air moves in cross flow over
kifflom [539]

Answer:

f_D = =3.24 N/m

Explanation:

data given

properties of air\nu\ of air =19.31*10^{-6} m2/s

\rho = 1.048 kg/m3

k = 0.0288 W/m.K

WE KNOW THAT

Reynold's number is given as

Re =\frac{VD}{\nu}

      = \frac{ 15*0.025}{19.31*10^{-6}}

      = 1.941 *10^4

drag coffecient is given as

C_D = \frac{f_D}{A_f\frac{\rho v^2}{2}}

solving for f_D

f_D = C_D A_f*\frac{\rho v^2}{2}

     =C_D D*\frac{\rho v^2}{2}

Drag coffecient for smooth circular cylinder is 1.1

therefore Drag force is

f_D = 1.1*0.025 *\frac{1.048*15^2}{2}

f_D = =3.24 N/m

4 0
2 years ago
(8%) Problem 9: Helium is a very important element for both industrial and research applications. In its gas form it can be used
exis [7]

Answer:

2046.37 kPa

Explanation:

Given:

Number of moles, n = 125

Temperature, T = 20° C = 20 + 273 = 293 K

Radius of the cylinder, r = 17 cm = 0.17 m

Height of the cylinder, h = 1.64 m

thus,

volume of the cylinder, V = πr²h

= π × 0.17² × 1.64

= 0.148 m³

Now,

From the ideal gas law

we have

PV = nRT

here,

P is the pressure

R is the ideal gas constant = 8.314  J / mol. K

thus,

P × 0.148 = 125 × 8.314 × 293

or

P × 0.148 = 304500.25

or

P = 2046372.64 Pa = 2046.37 kPa

6 0
2 years ago
Other questions:
  • This version of Einstein’s equation is often used directly to find what value?
    14·2 answers
  • a stomp rocket takes 1.5 seconds to reach its maximum height what was the initial velocity and what was the maximum height ?
    14·2 answers
  • The drawing shows the top view of a door that is 1.68 m wide. two forces are applied to the door as indicated. what is the magni
    14·1 answer
  • A catcher stops a 0.15-kg ball traveling at 40 m/s in a distance of 20 cm. what is the magnitude of the average force that the b
    10·2 answers
  • Two small balls, each of mass 5.0 g, are attached to silk threads 50 cm long, which are in turn tied to the same point on the ce
    12·1 answer
  • As you know, loudspeakers are used for communication at sporting events, and in schools or supermarkets. Research loudspeakers o
    5·1 answer
  • An object is located 13.5 cm in front of a convex mirror, the image being 7.05 cm behind the mirror. A second object, twice as t
    11·1 answer
  • An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and 6.0×10^3 N/C, respecti
    11·1 answer
  • A beam of unpolarized light with intensity I0 falls first upon a polarizer with transmission axis θTA,1 then upon a second polar
    6·1 answer
  • Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!