Answer and Explanation: Kinetic energy is related to movement: it is the energy an object possesses during the movement. it is calculated as:

For the object thrown in the air:
![K=\frac{1}{2}.2.[v(t)]^{2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B1%7D%7B2%7D.2.%5Bv%28t%29%5D%5E%7B2%7D)


Kinetic energy of the object as a function of time: 
Potential energy is the energy an object possesses due to its position in relation to other objects. It is calculated as:

For the object thrown in the air:



Potential energy as function of time: 
Total kinetic and potential energy, also known as mechanical energy is
TME =
+ (
)
TME = 1752
The expression shows that total energy of an object thrown in the air is constant and independent of time.
Answer:
Total Work done =0.65 joule
Explanation:
Work done is given Mathematically as
W=F *d
Where w=work done in joules
F=applied force
d= distance moved
The work done to move the toy accros the first meter is
W1=0.5*1
W1=0.5joule
The work done to move the toy across the next 2m at an angle of 30° is
.W2=0.5*2cos30
W2=0.5*2*0.154
W2=0.154joule
Hence total work done is
W1+W2=0.5+0.154
Total Work done =0.65 joule
Force, newtons 3rd law of motion stated for every action there is an equal and opposite reaction
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in magnetic field should be directed opposing to the change in the flux.