Answer:
The answer is: Law of multiple proportions
Explanation:
The law of multiple proportions is a law of chemical combination given by Dalton in 1803.
According to this law, if more than one chemical compound is formed by combining two elements, then the mass of an element that combines with the fixed mass of other element is represented in the form of small whole number ratio.
<u>Therefore, is an illustration of the law of the law of multiple proportions.</u>
Answer:
The mass left after 24.6 years is 25.0563 grams
Explanation:
The given parameters are;
The mass of the hydrogen-3 = 100 grams
The half life of hydrogen-3 which is also known as = 12.32 years
The formula for calculating half-life is given as follows;

Where;
N(t) = The mass left after t years
N₀ = The initial mass of the hydrogen-3 = 100 g
t = Time duration of the decay = 24.6 years
= Half-life = 12.32 years

The mass left after 24.6 years = 25.0563 grams.
Answer:
35 KJ.
Explanation:
The activation energy is the minimum energy that must be overcome for a reaction to take place.
In the diagram given above, the activation energy lies between the energy of the reactants and that at the peak.
Thus we can calculate the activation energy as follow:
Energy of reactants = 30 KJ
Energy at the peak = 65 KJ
Activation energy =..?
Activation energy = Energy at the peak – Energy of reactants
Activation energy = 65 – 30
Activation energy = 35 KJ
Therefore, the activation energy of th reaction is 35 KJ
Answer:
its height relative to some reference point, its mass, and the strength of the gravitational field
Explanation:
Gravitational energy is the potential energy associated with gravitational force, such as elevating objects against the Earth’s gravity. The potential energy due to elevated positions is called gravitational potential energy.
The factors that affect an object’s gravitational potential energy are the following; its height relative to some reference point, its mass, and the strength of the gravitational field it is in. For instance, consider a wallet lying on a table, it has less gravitational potential energy than the same wallet lying on top of a taller cupboard, and yet lesser gravitational potential energy than a heavier wallet lying on the same table.
If an object lies at a certain height above the Moon’s surface, it has less gravitational potential energy than the same object lying at the same height above the Earth’s surface because the Moon’s gravitational force is weaker.
Hello!
To find the amount of atoms that are in 80.45 grams of magnesium, we will need to know Avogadro's number and the mass of one mole of magnesium.
Avogadro's number is 6.02 x 10^23 atoms, and one mole of magnesium is equal to 24.31 grams.
1. Divide by one mole of magnesium
80.45 / 24.31 = 3.309 moles (rounded to the number of sigfigs)
2. Multiply moles by Avogadro's number
3.309 x (6.02 x 10^23) = 1.99 x 10^24 (rounded to the number of sigfigs)
Therefore, there are 1.99 x 10^24 atoms in 80.45 grams of magnesium.