The two strands must be separated like the two sides of a zipper, by breaking the weak hydrogen bonds that link the paired bases.
<u>Explanation:</u>
- A double helix structure formed by two polypeptide chains is separated like the two sides of a zipper. A zipper is formed by breaking the weak hydrogen bonds that link the paired bases. During replication, an enzyme "Helicase" travels down the DNA and splits the chain and it forms 2 separate strands.
- The two DNA strand which has the same sequence must be separated like the two sides of a zipper by breaking weak hydrogen bases. During base pair-rule, the strand are unzipped and each strands is copied.
Answer:
A titration
Explanation:
A common example of a titration is when we have an acid of unknown concentration, so we add a known volume of a base of known concentration. This process lets us determine the concentration of the acid.
By definition, a titration is a quantitative analysis, as we determine how much of an analyte is there in a sample. However, <u>there are quantitative analyzes which are not titrations</u>. This is why the most appropiate answer is<em> a titration</em>.
Answer:
AC₄ will precipitate out first.
Explanation:
A solid will precipitate out if the ionic product of the solution exceeds the solubility product.
Let us check the ionic product
a) A₂B₃
Ionic product = [A]²[B]³
[A] = say "s"
[B] = 0.05 , [B]³ = (0.05)³ = 0.000125
2.3 X 10⁻⁸ = [A]²(0.000125)
[A] = 0.0136
b) AC₄
Ionic product = [A] [C]⁴
[A] = "s"
[A][0.05]⁴ = 4.10 X 10⁻⁸
[A]=0.00656 M
So for ionic product to exceed solubility product, we need less concentration of A in case of AC₄.
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
Answer:
The heat of combustion of magnesium metal is 24.76 kJ/gram
Explanation:
Step 1: Data given
Mass of magnesium sample = 0.1946 grams
Molar mass of magnesium = 24.3 g/mol
bomb calorimeter that has a heat capacity of 1349 J/°C
Mass of water = 500 grams
Temperature change = 1.40 °C
Step 2: Calculated heat released
Q = (1349 J/°C * 1.40 °C) + (500 grams * 4.184 J/g°C * 1.40 °C)
Q =4817.4 J = 4.82 kJ
Step 3: Calculate the heat given off by the burning Mg, in kJ/g
4817.4 J / 0.1946 grams = 24755.4 J/ gram = 24.76 kJ/ gram
The heat of combustion of magnesium metal is 24.76 kJ/gram