answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
2 years ago
14

A student mixed 20.00 grams of calcium nitrate, 10.00 grams of sodium nitrate, and 50.00 grams of aluminum nitrate in a 5.00 Lit

re volumetric flask. What is the molarity (M) of the resulting solution relative to the nitrate ion, NO3 1-
Chemistry
1 answer:
My name is Ann [436]2 years ago
6 0

Answer:

M=0.213M

Explanation:

Hello,

In this case, for each nitrate-based salt, we compute the nitrate moles as shown below:

n_{NO_3^-}=20.00gCa(NO_3)_2*\frac{1molCa(NO_3)_2}{164.088 gCa(NO_3)_2} *\frac{2molNO_3^-}{1molCa(NO_3)_2} =0.244molNO_3^-

n_{NO_3^-}=10.00gNaNO_3*\frac{1molNaNO_3}{84.9947 gNaNO_3} *\frac{1molNO_3^-}{1molNaNO_3} =0.118molNO_3^-

n_{NO_3^-}=50.00gAl(NO_3)_3*\frac{1molAl(NO_3)_3}{212.996gAl(NO_3)_3} *\frac{3molNO_3^-}{1molAl(NO_3)_3} =0.704molNO_3^-

We notice calcium nitrate has two moles of nitrate ion, sodium nitrate has one and aluminium nitrate has three. Hence we add the moles to obtain the total moles nitrate ion:

n_{NO_3^-}^{Tot}=0.244+0.118+0.704=1.066molNO_3^-

Finally, we compute the molarity:

M=\frac{1.066molNO_3^-}{5.00L} \\\\M=0.213M

Regards.

You might be interested in
Megan prepares a pitcher of lemonade by adding a quarter cup of granular sugar to the mixture. Which action should she take so t
Monica [59]
The answer will be C
3 0
2 years ago
Rubbing alcohol contains 615g of isopropanol (C3H7OH) per liter (aqueous solution). Calculate the molality of this solution. Giv
faltersainse [42]

Answer:

Solution of isopropanol is 10.25 molal

Explanation:

615 g of isopropanol (C3H7OH) per liter

We gave the information that 615 g of solute (isopropanol) are contained in 1L of water. We need to find out the mass of solvent, so we use density.

Density of water 1g/mL → Density = Mass of water / 1000 mL of water

Notice we converted the L to mL

Mass of water = 1000 g (which is the same to say 1kg)

Molality are the moles of solute in 1kg of solvent, so let's convert the moles of isopropanol  → 615 g . 1mol / 60g = 10.25 moles

Molality (mol/kg) = 10.25 moles / 1kg = 10.25 m

4 0
2 years ago
A 6.0M solution HCl is diluted to 1.0M How many milliliters of the 6.0M solution would be used to prepare 100.o mL of the dilute
Margarita [4]
Wats r is the most soluble object ever. It is dense
4 0
2 years ago
Read 2 more answers
If 25 g of NH3, and 96 g of H2S react according to the following reaction, what is the
jeyben [28]

25 g of NH₃ will produce 47.8 g of (NH₄)₂S​

<u>Explanation:</u>

2 NH₃ + H₂S ----> (NH₄)₂S​

Molecular weight of NH₃ = 17 g/mol

Molecular weight of (NH₄)₂S​ = 68 g/mol

According to the balanced reaction:

2 X 17 g of NH₃ produces 68 g of (NH₄)₂S​

1 g of NH₃ will produce \frac{68}{34} g of (NH₄)₂S​

25g of NH₃ will produce \frac{65}{34} X 25 g of (NH₄)₂S​

                                     = 47.8 g of (NH₄)₂S​

Therefore, 25 g of NH₃ will produce 47.8 g of (NH₄)₂S​

4 0
2 years ago
When the reaction CO2(g) + H2(g) ⇄ H2O(g) + CO(g) is at equilibrium at 1800◦C, the equilibrium concentrations are found to be [C
UNO [17]

Answer:

The new molar concentration of CO at equilibrium will be  :[CO]=1.16 M.

Explanation:

Equilibrium concentration of all reactant and product:

[CO_2] = 0.24 M, [H_2] = 0.24 M, [H_2O] = 0.48 M, [CO] = 0.48 M

Equilibrium constant of the reaction :

K=\frac{[H_2O][CO]}{[CO_2][H_2]}=\frac{0.48 M\times 0.48 M}{0.24 M\times 0.24 M}

K = 4

CO_2(g) + H_2(g) \rightleftharpoons H_2O(g) + CO(g)

Concentration at eq'm:

0.24 M          0.24 M                 0.48 M            0.48 M

After addition of 0.34 moles per liter of CO_2 and H_2 are added.

(0.24+0.34) M    (0.24+0.34) M  (0.48+x)M         (0.48+x)M

Equilibrium constant of the reaction after addition of more carbon dioxide and water:

K=4=\frac{(0.48+x)M\times (0.48+x)M}{(0.24+0.34)\times (0.24+0.34) M}

4=\frac{(0.48+x)^2}{(0.24+0.34)^2}

Solving for x: x = 0.68

The new molar concentration of CO at equilibrium will be:

[CO]= (0.48+x)M = (0.48+0.68 )M = 1.16 M

3 0
2 years ago
Other questions:
  • Write the empirical formula of at least four binary ionic compounds that could be formed from the following ions:
    11·2 answers
  • Now consider the reaction a+2b⇌c for which in the initial mixture qc=[c][a][b]2=387 is the reaction at equilibrium? if not, in w
    7·1 answer
  • Calculate the freezing point of a solution containing 1.25g of benzene in 100g of chloroform
    8·2 answers
  • Which of the following is an example of how science can solve social problems? It can stop excessive rain from occurring. It can
    14·2 answers
  • Bella wants to know which mode of transportation is the fastest for getting from her home to the grocery store. She cans drive h
    6·1 answer
  • If you have a graduated cylinder, containing 15.5 mL and this volume changes to 95.2 mL after a metal with a mass of 7.95g is dr
    13·1 answer
  • What is the total mass of D-glucose dissolved in a 2-μL aliquot of the solution used for this experiment?
    11·1 answer
  • If 0.255 moles of AgNO₃ react with 0.155 moles of H₂SO₄ according to this UNBALANCED equation below, how many grams of Ag₂SO₄ co
    13·1 answer
  • Alex's teacher showed him a model of gas particles in a sealed container. How should Alex change the model to show the particles
    9·1 answer
  • The melting point of gallium metal is 29.76⁰C. If a piece of gallium is sliced into three parts, the melting point of each part
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!