Homogeneous
Hope this helps!!!
Answer and Explanation:
Iodine have lower atomic mass than tellurium even though the atomic number of iodine is more than the atomic number of tellurium
This is because the atomic weight of any element is the sum of number of proton and number of neutron, even though the number of proton in iodine is more so but the number of neutron is less as compared to tellurium which makes the tellurium of high atomic mass
The trends and exceptions to the trends in ionization energy observed includes;
B, ionization energy tends to increase across a period because the nuclear charge increases.
C, ionization energy tends to increase across a period because electrons are added to the same main energy level.
E, The ionization energies of elements in Group 13 tend to be lower than the elements in Group 2 because the full s orbital shields the electron, in the p orbital from the nucleus.
Ionization energies measure the tendency of a neutral atom to resist the loss of electrons. It takes a considerable amount of energy, for example to remove an electron from a neutral fluorine atom to form a positively charged ion. <span />
<u>Answer:</u> The energy of the complex is 
<u>Explanation:</u>
To calculate the energy of the complex, we use the equation given by Planck which is:

where,
= Wavelength of the complex =
(Conversion factor:
)
h = Planck's constant = 
c = speed of light = 
= Avogadro's number = 
= energy of the complex
Putting values in above equation, we get:

Conversion factor used: 1 kJ = 1000 J
Hence, the energy of the complex is 
Using charles law
v1/t1=v2/t2
v1=49ml
v2=74
t1=7+273=280k
t2=?
49/280=74/t2
0.175=74/t2 cross multiply
0.175t2=74
t2=74/0.175
t2=422k or 149celcius