We know that acceleration is change in velocity by time taken for that change.
In this case velocity change is 3.7 m/s
Time taken for this change = 60 ms = 
So acceleration of frog = 
= 61.66 m/
So acceleration of frog is 61.66 m/
o it is evident that frog is capable of remarkable accelerations.
Data:
Centripetal Force = ? (Newton)
m (mass) = 68 Kg
s (speed) = 3.9 m/s
R (radius) = 6.5 m
Formula:

Solving:





Answer:
<span>
B.159 N</span>
The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²
Answer:
The answer to your question is Decrease
V ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t²
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m
GOOD LUCK AND HOPE IT HELPS U