Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Answer:2.53*10^-10F
Explanation:
C=£o£r*A/d
Where £ is the permitivity of a constant
£o= 8.85*10^-12f/m
£r=6.3
A=150mm^2=0.015m^2
d=3.3mm= 0.0033m
C=8.85*10^-12*6.3*0.015/0.0033
C=8.85*6.3*10^-12*0.015/0.0033
C=55.755*0.015^-12/0.003
C=8.36/3.3*10^-13+3
C=2.53*10^-10F
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V
Answer:
It will neither translate in the opposite direction nor .rotate so as to be at right angles, it will also neither rotate so as to be vertical direction