1000 kcal because you only get 10% of the energy of the thing you eat
Answer:
a) 447.21m
b) -62.99 m/s
c)94.17 m/s
Explanation:
This situation we can divide in 2 parts:
⇒ Vertical : y =-200 m
y =1/2 at²
-200 = 1/2 *(-9.81)*t²
t= 6.388766 s
⇒Horizontal: Vx = Δx/Δt
Δx = 70 * 6.388766 = 447.21 m
b) ⇒ Horizontal
Vx = Δx/Δt ⇒ 70 = 400 /Δt
Δt= 5.7142857 s
⇒ Vertical:
y = v0t + 1/2 at²
-200 = v(5.7142857) + 1/2 *(-9.81) * 5.7142857²
v0= -7 m/s ⇒ it's negative because it goes down.
v= v0 +at
v= -7 + (-9.81) * 5.7142857
v= -62.99 m/s
c) √(70² + 62.99²) = 94.17 m/s
Answer: 6.48m/s
Explanation:
First, we know that Impulse = change in momentum
Initial velocity, u = 19.8m/s
Let,
Velocity after first collision = x m/s
Velocity after second collision = y m/s
Also, we know that
Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).
5700 = 1500(19.8 - x)
5700 = 29700 - 1500x
1500x = 29700 - 5700
1500x = 24000
x = 24000/1500
x = 16m/s
Also, at the second guard rail. impulse = ft, so that
Impulse = 79000 * 0.12
Impulse = 9480
This makes us have
Impulse = m(x - y)
9480 = 1500(16 -y)
9480 = 24000 - 1500y
1500y = 24000 - 9480
1500y = 14520
y = 14520 / 1500
y = 9.68
Then, the velocity decreases by 3.2, so that the final velocity of the car is
9.68 - 3.2 = 6.48m/s