Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
A = h / n => h = a*n
a = 0.290 hit / time
n = 300 times
=> h = 0.290 hit / time * 300 time = 87 hits
Answer: 87 hits
Answer:
B. τ = 16 Nm
Explanation:
In order to find the torque exerted by the weight attached to the heel of man's foot, when his leg is stretched out. We use following formula:
τ = Fd
here,
τ = Torque = ?
F = Force exerted by the weight = Weight = mg
F = mg = (4 kg)(10 m/s²) = 40 N
d = distance from knee to weight = 40 cm = 0.4 m
Therefore,
τ = (40 N)(0.4 m)
<u>B. τ = 16 Nm</u>
Answer:
A glass flask whose volume is 1000 cm ^3 at 0.0 ^oC is completely filled with mercury at this. Every substance when heat energy is supplied, expands due to the Rate of thermal expansion will be different for different materials. Volume of the glass flask and mercury at 0 degree Celsius V0=1000cm3=1×10−3m3 V 0
Explanation:
hope dis help!!!
Iodine is the answer to your question buddy