Basically team B would win since it is exerting a force of 900N unlike team A ( you can tell by doing 4900N minus 4000N ). It is very unbalanced.
Answer:
The correct answer is option E.
Explanation:
The Gibbs free energy is given by expression:
ΔG = ΔH - TΔS
ΔH = Enthalpy change of the reaction
T = Temperature of the reaction
ΔS = Entropy change
We have :
ΔH = -720.5 kJ/mol = -720500 J/mol (1 kJ = 1000 J)
ΔS = -263.7 J/K
T = 141.0°C = 414.15 K


The Gibb's free energy of the given reaction at 141.0°C is -611.3 kJ/mol.
Answer:
E) molality
Explanation:
Molality -
Molarity of a substance , is the number of moles present in a Kg of solvent .
Hence , the formula for molality is given as follow -
m = n / s
m = molality
s = mass of solvent in Kg ,
n = moles of solute ,
Hence , from the given information of the question,
The concentration unit which have Kg of solvent , is molality.
Answer:
<u />
- <u>There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.</u>
<u />
Explanation:
Using the molar mass of the chemical formula SF₆ you can find the number of moles of molecules in 0.35 g of such substance. Then, using the molar mass of NH₃, you can find mass in grams corresponding to the same number of molecules.
<u>1. Find the molar mass of SF₆:</u>
Atom atomic mass number of atoms total mass in 1 mole
S 32.065 g/mol 1 32.065 g
F 18.998 g/mol 6 6 × 18.998 = 113.988 g
=====================
molar mass of SF₆ = 146.053 g/mol
<u>2. Find the number of moles in 0.35 g of SF₆:</u>
- number of moles = mass in grams / molar mass
- number of moles = 0.35 g / 146.053 g / mol = 0.0024 mol
<u>3. Find the molar mass of NH₃:</u>
Atom atomic mass number of atoms total mass 1 mole
N 14.007 g/mol 1 14.007 g
H 1.008 g/mol 3 3 × 1.008 g = 113.988 g
=====================
molar mass of NH₃ = 17.031 g/mol
<u />
<u>4. Find the mass in 0.0024 mol of NH₃:</u>
- mass in grams = number of moles × molar mass
- mass = 0.0024 mol × 17.031 g/mol ≈ 0.041 grams
<u>5. Conclusion: </u>
There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.
<span>Answer:
M in this equation is molar mass. If A is He and B is O2 then MA = 4 g/mol and MB = 32 g/mol
rate A = 1.5L/24hr rate B = 1.5L/?hr and rateA/rateB = ?/24</span>