The answer is it breaks down food into energy
Have a Nice day
None of the above.
1 mole filled with gas at STP occupies
=22.4 L
∴ 3mole of kr gas at STP occupies
= 3 × 22.4
= 67.2 L
The question is incomplete, here is the complete question:
A chemist measures the amount of bromine liquid produced during an experiment. She finds that 766.g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.
<u>Answer:</u> The amount of liquid bromine produced is 4.79 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of liquid bromine = 766. g
Molar mass of liquid bromine,
= 159.8 g/mol
Putting values in above equation, we get:

Hence, the amount of liquid bromine produced is 4.79 moles.
Answer:
The wavelength of this light is 780.4 nm.
Explanation:
Given that,
The frequency of laser light, 
We need to find the wavelength of this light.
We know that,

Where
is the wavelength of light
So,

So, the wavelength of this light is 780.4 nm.
the actual yield is the amount of Na₂CO₃ formed after carrying out the experiment
theoretical yield is the amount of Na₂CO₃ that is expected to be formed from the calculations
we need to first find the theoretical yield
2Na₂O₂ + 2CO₂ ---> 2Na₂CO₃ + O₂
molar ratio of Na₂O₂ to Na₂CO₃ is 2:2
number of Na₂O₂ moles reacted is equal to the number of Na₂CO₃ moles formed
number of Na₂O₂ moles reacted is - 7.80 g / 78 g/mol = 0.10 mol
therefore number of Na₂CO₃ moles formed is - 0.10 mol
mass of Na₂CO₃ expected to be formed is - 0.10 mol x 106 g/mol = 10.6 g
therefore theoretical yield is 10.6 g
percent yield = actual yield / theoretical yield x 100%
81.0 % = actual yield / 10.6 g x 100 %
actual yield = 10.6 x 0.81
actual yield = 8.59 g
therefore actual yield is 8.59 g