answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Simora [160]
3 years ago
13

1000 cm + 114 m + 12 km + 160 mm = mm

Physics
1 answer:
antoniya [11.8K]3 years ago
4 0

Answer:

12 124 160 millimeters

Explanation:

You might be interested in
A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger pulley with an angular velocity
Likurg_2 [28]

Answer:

a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2  = 239.6 N,

b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm

Explanation:

Given that:

γ= 9.5 kN/m³ = 9500N/m3

b = 6 inches = 0.1524 m

t = 0.0013 mm

d = 2 inches  = 0.0508 m

n = 1750 rpm

H_{nom}=2hp=1491.4W

L = 9 ft = 2.7432 m

Ks = 1.25

g = 9.81 m/s²

a)

w=\gamma b t = 9500* 0.1524*0.0013=1.88N/m

V=\frac{\pi d n}{60} =\pi *0.0508*1750/60=4.65 m/s

F_c=\frac{wV^2}{g}=1.88*4.65^2/9.81=4.15N

(F_1)_a=bF_aC_pC_v=0.1524*6000*0.7*1=640N

T=\frac{H_{nom}n_dK_s}{2\pi n}= \frac{1491*1.25*1}{2*\pi*1750/60}=10.17Nm

F_2=(F_1)_a-\frac{2T}{D}= 640-\frac{2*10.17}{0.0508} =239.6N

F_i=\frac{(F_1)_a+F_2}{2} -F_c=435.65N

b)

H_a=1491*1.25=1863.75W

n_f_s=\frac{H_a}{H_{nom}K_S }=1

dip = \frac{L^2w}{8F_i} =\frac{2.7432*1.88}{435.65}=11.8mm

7 0
2 years ago
A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
tankabanditka [31]

Answer:

80 m/s^2

Explanation:

The acceleration of an object is given by:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time interval it takes for the velocity to change from u to v

For the rocket in this problem,

u = 20,000 m/s

v = 24,000 m/s

t = 55.0 - 5.0 = 50.0 s

Substituting,

a=\frac{24000-20000}{50}=80 m/s^2

7 0
2 years ago
An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v
Aneli [31]

We are given: Final velocity (v_f)=20 m/s .

Time t= 2.51 s and

distance s = 82.9 m.

We know, equation of motion

v_f = v_i + at.

Let us plug values of final velocity, and time in above equation.

20=v_i+a(2.51)

20=v_i+2.51a

Subtracting 2.51a from both sides, we get

20-2.51a=v_i  -----------equation(1)

Using another equation of motion

v_f-v_i=2as

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.

We get,

20-(20-2.51a)=2*a(82.90)

Now, we need to solve it for a.

20-20+2.51a=165.8a.

-163.29a=0

a=0.

So, the acceleration would be 0 m/s^2.


5 0
2 years ago
A fan is to accelerate quiescent air to a velocity of 12.5 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
Reika [66]

Answer:

= 829.69 Watt

≅ 830 Watt

Explanation:

Given that,

Velocity of air flow = 12.5m/s

Rate of flow of air = 9m³/s

Density of air = 1.18kg/m³

power by kinetic energy = 1/2(mv²)

mass = density × volume

m = 1.18 × 9

  = 10.62 kg/s

power = 1/2 mV²

           = 1/2 (10.62 × 12.5²)

           = 829.69 Watt

           ≅ 830 Watt

Flow rate  

u

=

9

 

m

3

/

s

Velocity of the air  

V

=

8

 

m/s

Density of the air  

ρ

=

1.18

 

kg

/

m

3

5 0
2 years ago
A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equa
love history [14]

Answer:

I = 16 kg*m²

Explanation:

Newton's second law for rotation

τ = I * α   Formula  (1)

where:

τ : It is the moment applied to the body.  (Nxm)

I :  it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)

α : It is angular acceleration. (rad/s²)

Kinematics of the wheel

Equation of circular motion uniformly accelerated :  

ωf = ω₀+ α*t  Formula (2)

Where:  

α : Angular acceleration (rad/s²)  

ω₀ : Initial angular speed ( rad/s)  

ωf : Final angular speed ( rad

t : time interval (rad)

Data  

ω₀ = 0

ωf = 1.2 rad/s

t = 2 s

Angular acceleration of the wheel  

We replace data in the formula (2):  

ωf = ω₀+ α*t

1.2= 0+ α*(2)

α*(2) = 1.2

α = 1.2 / 2

α = 0.6 rad/s²

Magnitude of the net torque (τ )

τ = F *R

Where:

F  = tangential force (N)

R  = radio (m)

τ = 80 N *0.12 m

τ = 9.6 N *m

Rotational inertia of the wheel

We replace data in the formula (1):

τ = I * α

9.6 = I *(0.6 )

I = 9.6 / (0.6 )

I = 16 kg*m²

8 0
2 years ago
Other questions:
  • It takes 56.5 kilojoules of energy to raise the temperature of 150 milliliters of water from 5°C to 95°C. If you
    6·1 answer
  • An upward force is applied to a 6.0–kilogram box. This force displaces the box upward by 10.00 meters. What is the work done by
    8·1 answer
  • A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
    5·1 answer
  • A charge Q experiences no net force at a particular point in space. Which of the following situations described below must ALWAY
    11·1 answer
  • A bucket of mass M (when empty) initially at rest and containing a mass of water is being pulled up a well by a rope exerting a
    5·1 answer
  • An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
    11·1 answer
  • Our two intrepid relacar drivers are named Pam and Ned. We use these names to make it easy to remember: measurements made by Pam
    5·1 answer
  • A frog leaps up from the ground and lands on a step 0.1 m above the ground 2 s later. We want to find the
    6·1 answer
  • A tennis ball travelling at a speed of 46m/s with a mass of 58kg. Calculate the kinetic<br>energy​
    14·1 answer
  • Four students were loading boxes of food collected during a food drive. The force that each student exerted while lifting and th
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!