Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this:
<span>H2C=O---------H-OH </span>
<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>
<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>
<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
Answer:
The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of 1.01 g/mL is 12.90% by mass
Explanation:
2.23 M aqueous solution of NaCl means there are 2.23 moles of NaCl in 1000 mL of solution.
We know that density is equal to ratio of mass to volume.
Here density of solution is 1.01 g/mL.
So mass of 1000 mL solution = (
) g = 1010 g
molar mass of NaCl = 58.44 g/mol
So mass of 2.23 moles of NaCl = (
) g = 130.3 g
% by mass is ratio of mass of solute to mass of solution and then multiplied by 100.
Here solute is NaCl.
So % by mass of 2.23 M aqueous solution of NaCl =
% = 12.90%
Options:
monoglycerides
cocamide DEA
folic acid
iron chromium ion
peroxide
lauryl glucoside
disodium phosphate
Answer and Explanation:
The added chemicals are:
- monoglycerides
- folic acid
- iron
- disodium phophates
Monoglycerides are fats added for flavour. Folic cid and iron are vitamins added for nutritional value. disodium phosphate is a food additive for enhancing flavour.
The remaining ingredients are organic based.
Answer:
The glow stick in hot water will be brighter
Explanation:
The glow stick in hot water will be brighter than the glow stick in cold water because the heat from the hot water will cause the molecules in the glow stick to move faster. The faster the molecules move in the glow stick, the sooner and brighter the reaction will be. The cold water will cause molecules to move slowly and it will take longer for the reaction to occur, which will also make it less bright.
Answer:
The answer to be filled in the respective blanks in question is
3 and 1
Explanation:
So, we know that the formation of cabon-dioxide mole and that of Adenosin-Tri-Phosphate (ATP) moles will be in the ratio of 3:1 i.e., three carbon-di-oxide moles and 1 ATP mole.
Therefore, we can say that one pyruvate mole when passed through citric acid cycle and pyruvate dehydrogenase yields carbon-di-oxide and ATP moles in the ratio 3:1