The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>
a scale-model mound made of the same materials that make the real hill
Answer:
1.822 g of magnesium hydroxide would be produced.
Explanation:
Balanced reaction: 
Compound Molar mass (g/mol)
NaOH 39.997
95.211
58.3197
So, 2.50 g of NaOH =
mol of NaOH = 0.0625 mol of NaOH
4.30 g of
=
mol of
= 0.0452 mol of 
According to balanced equation-
2 mol of NaOH produce 1 mol of
So, 0.0625 mol of NaOH produce
mol of NaOH or 0.03125 mol of NaOH
1 mol of
produces 1 mol of
So, 0.0452 mol of
produce 0.0452 mol of
As least number of moles of
are produced from NaOH therefore NaOH is the limiting reagent.
So, amount of
would be produced = 0.03125 mol
=
g
= 1.822 g
Answer:
Equilibrium constant for
is 0.5
Equilibrium constant for decomposition of
is 
Explanation:
dissociates as follows:

initial 0.72 mol 0 0
at eq. 0.72 - 0.40 0.40 0.40
Expression for the equilibrium constant is as follows:
![k=\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
Substitute the values in the above formula to calculate equilibrium constant as follows:
![k=\frac{[0.40/1][0.40/1]}{0.32/1} \\=\frac{0.40 \times 0.40}{0.32} \\=0.5](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5B0.40%2F1%5D%5B0.40%2F1%5D%7D%7B0.32%2F1%7D%20%5C%5C%3D%5Cfrac%7B0.40%20%5Ctimes%200.40%7D%7B0.32%7D%20%5C%5C%3D0.5)
Therefore, equilibrium constant for
is 0.5
Now calculate the equilibrium constant for decomposition of 
It is given that
is decomposed.
decomposes as follows:

initial 1.0 M 0 0
at eq. concentration of
is:
![[NO_2]_{eq}=1-(0.000066) = 0.999934\ M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D1-%280.000066%29%20%3D%200.999934%5C%20M)
![[NO]_{eq}=6.6 \times 10^{-5}\ M](https://tex.z-dn.net/?f=%5BNO%5D_%7Beq%7D%3D6.6%20%5Ctimes%2010%5E%7B-5%7D%5C%20M)
Expression for equilibrium constant is as follows:
![K=\frac{[NO]^2[O_2]}{[NO_2]^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO%5D%5E2%5BO_2%5D%7D%7B%5BNO_2%5D%5E2%7D)
Substitute the values in the above expression
![K=\frac{[6.6\times 10^{-5}]^2[3.3 \times 10^{-5}]}{[0.999934]^2} \\=1.79\times 10^{-14}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5B6.6%5Ctimes%2010%5E%7B-5%7D%5D%5E2%5B3.3%20%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B%5B0.999934%5D%5E2%7D%20%5C%5C%3D1.79%5Ctimes%2010%5E%7B-14%7D)
Equilibrium constant for decomposition of
is 
Answer:
6
Explanation:
You will see H6 and the H stands for helium and the 6 is how many of that atom is there