Answer:

Explanation:
We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.
We know that frequency of simple pendulum follows that 
Now, the speed of the father will be
while for the child the speed will be 
The ratio of the father’s speed to the child’s speed will be

Answer:
The correct answer is c. When the balloon hits the ground, the rubber envelope stretches, storing elastic potential energy; this elastic potential energy is converted to the gravitational potentiaL
Explanation:
Let's analyze the situation of the globe
When it touches the ground, the part that is in contact decreases its velocity to zero, but the upper part of the ball continues to move, which creates that the molecules approach slightly, if we approximate the spring links, a repulsive force is created that after all the particles reach zero speed. The force of the springs moves the ball up until the force decreases to zero.
We can relate this force of Hooke with an elastic energy
This energy can be stored in the deformation of the system, as elastic potential energy, which is subsequently transformed into gravitational potential energy when the balloon is lifted.
The correct answer is c
Answer: there are 15 coins of $2 and 18 coins of $5
Explanation:
I will answer in English.
X is the number of $5 coins.
Y is the number of $2 coins.
We have the system of equations:
Y + X = 33
Y*2 + X*5 = 120
first, we must isolate one of the variables in one of the equations and then replace it in the other equation, let's isolate Y in the first equation:
Y = 33 - X.
Then we can replace it in the other equation:
(33 - X)*2 + X*5 = 120
66 - X*2 + X*5 = 120
X*3 = 54
X = 54/3 = 18
and using the equation for Y.
Y = 33 - X = 33 - 18 = 15
So there are 15 coins of $2 and 18 coins of $5
a) 6.25 rad/s
The law of conservation of angular momentum states that the angular momentum must be conserved.
The angular momentum is given by:

where
I is the moment of inertia
is the angular speed
Since the angular momentum must be conserved, we can write

where we have
is the initial moment of inertia
is the initial angular speed
is the final moment of inertia
is the final angular speed
Solving for
, we find

b) 28.1 J and 35.2 J
The rotational kinetic energy is given by

where
I is the moment of inertia
is the angular speed
Applying the formula, we have:
- Initial kinetic energy:

- Final kinetic energy:

Answer:
Explanation:
The pail is rotated at a constant rate in vertical circular path so it has the minimum speed at all points along its circular path . That means at top position the velocity is almost zero. In that case the centripetal force at top position will be provided by its weight or
mg = mv² / r ( r is radius of vertical circular path )
v = √ rg
At the bottom position its velocity will be increased due to loss of potential energy
so 1/2 m V² = 1/2 m v² + mg x 2r
V =√ 5 gr
If R be the reaction force at the bottom by bottom of pail
R - mg = mV² / r
R = mg +mV² / r
= mg + m x 5gr / r
R = 6mg
This is the magnitude of the force exerted by the water on the bottom of the pail .