The trick for this problem is to understand atomic mass: the fact that different atoms have different masses. What we need to do is add up all the atomic masses of the compound and work out the ratio of mass of water to the mass of sodium carbonate. Atomic masses are often given for each atom in the periodic table, but you can look them up on google too.
You can do this by adding up individual atoms for each molecule, or you can shortcut and lookup the molar mass of the compound (i.e.the task already done for you).
The molar mass of water is 18.01g/mole so for 10 moles of water we have a mass of 180.1g.
The molar mass of sodium carbonate is 106g/mole (google).
So the total mass of the sodium carbonate decahydrate compound is 180.1+106 = 286.1g, of which water would make up 180.1g, so the percentage of water is is 180.1/286.1 = 0.629, so we can round this to 63%
:)
Answer:
11482 ppt of Li
Explanation:
The lithium is extracted by precipitation with B(C₆H₄)₄. That means moles of Lithium = Moles B(C₆H₄)₄. Now, 1 mole of B(C₆H₄)₄ produce the liberation of 4 moles of EDTA. The reaction of EDTA with Mg²⁺ is 1:1. Thus, mass of lithium ion is:
<em>Moles Mg²⁺:</em>
0.02964L * (0.05581mol / L) = 0.00165 moles Mg²⁺ = moles EDTA
<em>Moles B(C₆H₄)₄ = Moles Lithium:</em>
0.00165 moles EDTA * (1mol B(C₆H₄)₄ / 4mol EDTA) = 4.1355x10⁻⁴ mol B(C₆H₄)₄ = Moles Lithium
That means mass of lithium is (Molar mass Li=6.941g/mol):
4.1355x10⁻⁴ moles Lithium * (6.941g/mol) = 0.00287g. In μg:
0.00287g * (1000000μg / g) = 2870μg of Li
As ppt is μg of solute / Liter of solution, ppt of the solution is:
2870μg of Li / 0.250L =
<h3>11482 ppt of Li</h3>
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Answer:
It sounds like they are studying French phonemes
Explanations:
I just learned this.
Answer:
The kinetic increases by 48.84 %
Explanation:
The expression for the kinetic energy is:-

Where, m is the mass of the object
v is the velocity of the object
Let the new velocity is:- v'
v is increased by 22 %. Thus, v' = 1.22 v
So, the new kinetic energy is:-

<u>Thus, the kinetic increases by 48.84 %</u>