Answer:
Both reaction A and reaction B are non spontaneous.
Explanation:
For a spontaneous reaction, change in gibbs free energy (
) should be negative.
We know,
, where T is temperature in Kelvin scale.
Reaction A: 
As
is positive therefore the reaction is non-spontaneous.
If at a temperature T K , the reaction is spontaneous then-

or, 
or, 
or, 
So at a temperature greater than 350 K, the reaction is spontaneous.
Reaction B: 
As
is positive therefore the reaction is non-spontaneous.
If at a temperature T K , the reaction is spontaneous then-

or, 
or, 
or, 
So at a temperature greater than -16 K, the reaction is spontaneous.
Molybdenum Arsenide
I think that’s right but not %100 sure
Answer:
70.0°C
Explanation:
We are given;
- Amount of heat generated by propane as 104.6 kJ or 104600 Joules
- Mass of water is 500 g
- Initial temperature as 20.0 ° C
We are required to determine the final temperature of water;
Taking the initial temperature is x°C
We know that the specific heat of water is 4.18 J/g°C
Quantity of heat = Mass × specific heat × change in temperature
In this case;
Change in temp =(x-20)° C
Therefore;
104600 J = 500 g × 4.18 J/g°C × (x-20)
104600 J = 2090x -41800
146400 = 2090 x
x = 70.0479
=70.0 °C
Thus, the final temperature of water is 70.0°C
Answer:
C. 4x10⁻⁴ mol / (Ls)
Explanation:
Based in the reaction:
5 H₂O₂(aq) + 2 MnO₄⁻(aq) + 6 H⁺(aq) → 2 Mn²⁺(aq) + 8 H₂O(l) + 5 O₂(g)
2 moles of MnO₄⁻ disappears while 5 moles of O₂ appears.
If 5 moles appears in a rate of 1.0x10⁻³mol /(Ls), 2 moles will disappear:
2 moles ₓ (1.0x10⁻³mol /(Ls) / 5 moles) = <em>4x10⁻⁴ mol / (Ls)</em>
Right answer is:
C. 4x10⁻⁴ mol / (Ls)
Answer:
It exerts a pressure of 3.6 atm
Explanation:
This is a gas law problem. We are looking at volume and pressure with temperature being kept constant, thus, the gas law to use is Boyle’s law. It states that at a given constant temperature, the volume of a given mass of gas is inversely proportional to the pressure of the gas.
Mathematically; P1V1 = P2V2
Let’s identify the parameters according to the question.
P1 = 1.2 atm
V1 = 375mL
P2 = ?
v2 = 125mL
We arrange the equation to make room for P2 and this can be written as:
P2 = P1V1/V2
P2 = (1.2 * 375)/125
P2 = 3.6 atm