Explanation:
The - 3 degree C( carbon atom) 2p atomic orbital + methyl C-H sigma molecular orbital because one C-H bond has to dissolve its bond and provide the H that is sigma molecular orbital and the carbonation is type 3 degree sp2 carbon.
Hyperconjugation is the stabilizing effect arising from the electrons ' engagement in a π-bond (usually C-H or C-C) with a neighboring empty or partly filled p-orbital or π-orbital to provide an expanded molecular orbital that enhances system stability.
Answer:

Explanation:
1. Concentration of SO₄²⁻
SrSO₄(s) ⇌ Sr²⁺(aq) +SO₄²⁻(aq); Ksp = 3.44 × 10⁻⁷
0.0150 x
![K_{sp} =\text{[Sr$^{2+}$][SO$_{4}^{2-}$]} = 0.0150x = 3.44 \times 10^{-7}\\x = \dfrac{3.44 \times 10^{-7}}{0.0150} = \mathbf{2.293 \times 10^{-5}} \textbf{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BSr%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%5E%7B2-%7D%24%5D%7D%20%3D%200.0150x%20%3D%203.44%20%5Ctimes%2010%5E%7B-7%7D%5C%5Cx%20%3D%20%5Cdfrac%7B3.44%20%5Ctimes%2010%5E%7B-7%7D%7D%7B0.0150%7D%20%3D%20%5Cmathbf%7B2.293%20%5Ctimes%2010%5E%7B-5%7D%7D%20%5Ctextbf%7B%20mol%2FL%7D)
2. Concentration of Pb²⁺
PbSO₄(s) ⇌ Pb²⁺(aq) + SO₄²⁻(aq); Ksp = 2.53 × 10⁻⁸
x 2.293 × 10⁻⁵
![K_{sp} =\text{[Pb$^{2+}$][SO$_{4}^{2-}$]} = x \times 2.293 \times 10^{-5} = 2.53 \times 10^{-8}\\\\x = \dfrac{2.53 \times 10^{-8}}{2.293 \times 10^{-5}} = \mathbf{1.10 \times 10^{-3}} \textbf{ mol/L}\\\\\text{The concentration of Pb$^{2+}$ is $\large \boxed{\mathbf{1.10 \times 10^{-3}}\textbf{ mol/L}}$}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BPb%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%5E%7B2-%7D%24%5D%7D%20%3D%20x%20%5Ctimes%202.293%20%5Ctimes%2010%5E%7B-5%7D%20%3D%202.53%20%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5Cx%20%3D%20%5Cdfrac%7B2.53%20%5Ctimes%2010%5E%7B-8%7D%7D%7B2.293%20%5Ctimes%2010%5E%7B-5%7D%7D%20%3D%20%5Cmathbf%7B1.10%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctextbf%7B%20mol%2FL%7D%5C%5C%5C%5C%5Ctext%7BThe%20concentration%20of%20Pb%24%5E%7B2%2B%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.10%20%5Ctimes%2010%5E%7B-3%7D%7D%5Ctextbf%7B%20mol%2FL%7D%7D%24%7D)
Answer : The mole fraction of nitrogen will be 0.4615.
Explanation : When nitrogen (
)and hydrogen (
)are mixed, the mole ratio becomes 1 : 1.5,
Now we know that (
) is acting as a limiting agent.
So at the time of when 0.4 moles of (
) is been formed it requires 0.4 moles of (
) and 3.4 moles of (
)
So, we find the the remaining (
) will be 0.6 and
(
) will be 0.3 mole present in mixture.
So, the mole fraction of (
) becomes = 0.6 / (0.6 + 0.4 + 0.3) Which becomes = 0.4615
Calcium ions have oxidation state 2+ => Ca (2+).
Bromime ions (bromide) have oxidation state 1- => Br (-).
So, to be neutral the compound has to have two Br (-) ions per each Ca(2+) ion.
That is represented in the chemical formula as Ca Br2, where the number 2 to the right of Br is a subscript meaning that there are two atoms of Br per each atom of Ca (the lack of subscript means 1 atom).
Answer: Ca Br2.