answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
2 years ago
5

A boy leaps over a rock.

Physics
1 answer:
n200080 [17]2 years ago
5 0

Answer:

When the boy has first started the motion this is similar to what kangaroo moves.

Initially the  boy was standing and only force of gravity due to his own mass was acting.

When the boy started leaping an acceleration happened that caused his motion. His leg were bent to push above ground to leap, this provided an acceleration to the center of mass of the boy. and equal and opposite force was acted on the boys feet's touching the ground.  

So according to Newton's  third law action force was acted on the ground by the boy feet, and the reaction force was the opposite force by the rock and this caused the boy to accelerate.

You might be interested in
A passenger compartment of a rotating amusement park ride contains a bench on which a book of mass
Basile [38]

a) 120 s

b) v = 0.052R [m/s]

Explanation:

a)

The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).

The graph of the problem is missing, find it in attachment.

To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.

The first point we take is t = 0, when the position of the book is x = 0.

Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.

Therefore, the period is

T = 120 s - 0 s = 120 s

b)

The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.

The perimeter of the wheel is:

L=2\pi R

where R is the radius of the wheel.

The period of revolution is:

T=120 s

Therefore, the tangential speed of the book is:

v=\frac{L}{T}=\frac{2\pi R}{120}=0.052R

8 0
2 years ago
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
2 years ago
Changes that occur in the urinary system with aging include all of the following, EXCEPT
Sladkaya [172]

Answer: c. increased sensitivity to ADH

Explanation:

a. a decline in the number of functional nephrons: With aging the loss of nephron occurs that can be detected by the age related decrease in the glomerular filteration rate.

b. a reduction in the GFR (glomerular filtration rate): The GFR tend to decline in older age even though there is no disease. These people are required to check with the GFR in future.

d. problems with the micturition reflex: With aging people experience problem of bladder control. This leads to leakage or incontinence of urine or urinary retention that is inability to empty the bladder.

e. loss of sphincter muscle tone: With age the sphincter tone may diminish. This results in loss of control and storage capacity. The rectal muscles or sphincter muscles get loose which lead to passage of stool before reaching the washroom.

6 0
2 years ago
The equilibrium fraction of lattice sites that are vacant in silver (Ag) at 600°C is 1 × 10-6. Calculate the number of vacancies
algol [13]

Answer :

The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.

Explanation:

Given,

Atomic mass of silver = 107.87 g/mol

Density of silver = 10.35 g/cm^3

Converting to g/m^3,

= 10.35 g/cm^3 × 10^6cm^3/m^3

= 10.35 × 10^6 g/m^3

Avogadro's number = 6.022 × 10^23 atoms/mol

Fraction of lattice sites that are vacant in silver = 1 × 10^-6

Nag = (Na * Da)/Aag

Where,

Nag = Total number of lattice sites in Ag

Na = Avogadro's number

Da = Density of silver

Aag = Atomic weight of silver

= (6.022 × 10^23 × (10.35 × 10^6)/107.87

= 5.778 × 10^28 atoms/m^3

The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6

= 5.778 × 10^22/m^3.

6 0
2 years ago
A simple pendulum 0.64m long has a period of 1.2seconds. Calculate the period of a similar pendulum 0.36m long in the same locat
weqwewe [10]

The period of the second pendulum is 0.9 s

Explanation:

The period of a simple pendulum is given by the equation

T=2\pi \sqrt{\frac{L}{g}}

where

L is the length of the pendulum

g is the acceleration of gravity at the location of the pendulum

For the first pendulum, we have

L = 0.64 m

T = 1.2 s

Therefore we can find the value of g at that location:

g=(\frac{2\pi}{T})^2 L=(\frac{2\pi}{1.2})^2 (0.64)=17.5 m/s^2

Now we can find the period of the second pendulum at the same location, which is given by

T=2\pi \sqrt{\frac{L}{g}}

where we have

L = 0.36 m (length of the  second pendulum)

g=17.5 m/s^2

Substituting,

T=2\pi \sqrt{\frac{0.36}{17.5}}=0.9 s

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • Suppose that a barometer was made using oil with rho=900 kg/m3. What is the height of the barometer at atmospheric pressure?
    10·1 answer
  • A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance, with what velocity was the ball thrown?
    8·1 answer
  • The robot arm is elevating and extending simultaneously. At a given instant, θ = 30°, ˙ θ = 10 deg / s = constant θ˙=10 deg/s=co
    6·1 answer
  • A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
    12·1 answer
  • The automobile has a weight of 2700 lb and is traveling forward at 4 ft&gt;s when it crashes into the wall. If the impact occurs
    10·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is
    12·1 answer
  • A truck of mass 1800kg is moving with a speed 54km/h. When brakes are applied, it
    12·1 answer
  • Carry's car has a mass of 1000 kg and its brakes can apply 8000 N of force. If she is driving at 24 m/s and sees something in th
    5·1 answer
  • It took a squirrel 0.50\,\text s0.50s0, point, 50, start text, s, end text to run 5.0\,\text m5.0m5, point, 0, start text, m, en
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!