Shear stress = 1.0 N/m² (Pa)
For water, the dynamic viscosity = 10⁻³ Pa-s at 20°C.
The velocity gradient required = (Shear stress)/(Dynamic viscosity)
= (1.0 Pa)/( 10⁻³ Pa-s)
= 10³ 1/s
Answer: 10³ s⁻¹
Answer:
No, the resulting wave in the diagram does not demonstrate destructive interference. The resulting wave in the diagram shows a bigger wave than Wave 1 or Wave 2. If it demonstrated destructive interference, it would be a smaller wave or a horizontal line. With destructive interference, waves break down to form a smaller wave, or cancel each other out, resulting in no wave formation.
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
<h2>Answer: at an angle

below the inclined plane.
</h2>
If we draw the <u>Free Body Diagram</u> for this situation (figure attached), taking into account only the gravity force in this case, we will see the weight
of the block, which is directly proportional to the gravity acceleration
:

This force is directed vertically at an angle
below the inclined plane, this means it has an X-component and a Y-component:



Therefore the correct option is c
Answer:
Explanation:
mass of car, m = 1000 kg
initial velocity, u = 20 m/s
final velocity, v = 0 m/s
distance, s = 120 m
Let a be the acceleration of motion
use third equation of motion
v² = u² + 2 as
0 = 20 x 20 + 2 x a x 120
a = - 1.67 m/s²
Let F be the force
Force, F mass x acceleration
F = - 1000 x 1.67
F = - 1666.67 N
The direction of force is towards south and the magnitude of force is 1666.67 N.