answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
2 years ago
6

The 600-N ball shown is suspended on a string AB and rests against the frictionless vertical wall. The string makes an angle of

30° with the wall. The line AB goes through the center of the ball, and the contact point with the wall is at the same vertical height as the center of the ball. The ball presses against the wall with a force of magnitude:
Physics
1 answer:
Harrizon [31]2 years ago
4 0

Answer: T = 692.82 and 346.4 N

Explanation:

Given that;

w = 600 N

∅ = 30°

ΣFy = ma

a = 0 m/s²

ΣF = T(cos30°) - W = 0

T(cos30°) = W

we Divide both sides by cos30°

T = W / cos30o

T= 600N / cos30°

T = 692.82

and ∑fx

F = T sin∅

F = 692.82 × (sin30°)

F = 346.4 N

You might be interested in
An electric winch is used to raise a 40-kg package and a 10-kg package vertically up the side of a building as pictured in the d
just olya [345]

Answer:

Explanation:

40 divided by 10 then which would equal 4. Add the 1.0 , 2 ,and 15 together. Then multply the 60 by 18.0 after you are done dividing the answer is 3 with a remainder of 6.

3 0
2 years ago
To start the analysis of this circuit you must write energy conservation (loop) equations. Each equation must involve a round-tr
REY [17]

Answer:

Explanation:

Electric field talks about a region around a charged particle or object within which a force would be exerted on other charged particles or objects. to find the electric field inside the bulb we will apply the electric filed formula.

Please kindly check attachment for step by step explaination.

6 0
2 years ago
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
A compact, dense object with a mass of 2.90 kg is attached to a spring and is able to oscillate horizontally with negligible fri
enot [183]

(a) 80 N/m

The spring constant can be found by using Hooke's law:

F=kx

where

F is the force on the spring

k is the spring constant

x is the displacement of the spring relative to the equilibrium position

At the beginning, we have

F = 16.0 N is the force applied

x = 0.200 m is the displacement from the equilibrium position

Solving the formula for k, we find

k=\frac{F}{m}=\frac{16.0 N}{0.200 m}=80 N/m

(b) 0.84 Hz

The frequency of oscillation of the system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 80 N/m is the spring constant

m = 2.90 kg is the mass attached to the spring

Substituting the numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{80 N/m}{2.90 kg}}=0.84 Hz

(c) 1.05 m/s

The maximum speed of a spring-mass system is given by

v=\omega A

where

\omega is the angular frequency

A is the amplitude of the motion

For this system, we have

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m (the amplitude corresponds to the maximum displacement, so it is equal to the initial displacement)

Substituting into the formula, we find the maximum speed:

v=(5.25 rad/s)(0.200 m)=1.05 m/s

(d) x = 0

The maximum speed in a simple harmonic motion occurs at the equilibrium position. In fact, the total mechanical energy of the system is equal to the sum of the elastic potential energy (U) and the kinetic energy (K):

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2

where

k is the spring constant

x is the displacement

m is the mass

v is the speed

The mechanical energy E is constant: this means that when U increases, K decreases, and viceversa. Therefore, the maximum kinetic energy (and so the maximum speed) will occur when the elastic potential energy is minimum (zero), and this occurs when x=0.

(e) 5.51 m/s^2

In a simple harmonic motion, the maximum acceleration is given by

a=\omega^2 A

Using the numbers we calculated in part c):

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m

we find immediately the maximum acceleration:

a=(5.25 rad/s)^2(0.200 m)=5.51 m/s^2

(f) At the position of maximum displacement: x=\pm 0.200 m

According to Newton's second law, the acceleration is directly proportional to the force on the mass:

a=\frac{F}{m}

this means that the acceleration will be maximum when the force is maximum.

However, the force is given by Hooke's law:

F=kx

so, the force is maximum when the displacement x is maximum: so, the maximum acceleration occurs at the position of maximum displacement.

(g) 1.60 J

The total mechanical energy of the system can be found by calculating the kinetic energy of the system at the equilibrium position, where x=0 and so the elastic potential energy U is zero. So we have

E=K=\frac{1}{2}mv_{max}^2

where

m = 2.90 kg is the mass

v_{max}=1.05 m/s is the maximum speed

Solving for E, we find

E=\frac{1}{2}(2.90 kg)(1.05 m/s)^2=1.60 J

(h) 0.99 m/s

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

so the elastic potential energy is

U=\frac{1}{2}kx^2=\frac{1}{2}(80 N/m)(0.0667 m)^2=0.18 J

and since the total energy E = 1.60 J is conserved, the kinetic energy is

K=E-U=1.60 J-0.18 J=1.42 J

And from the relationship between kinetic energy and speed, we can find the speed of the system:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(1.42 J)}{2.90 kg}}=0.99 m/s

(i) 1.84 m/s^2

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

So the restoring force exerted by the spring on the mass is

F=kx=(80 N/m)(0.0667 m)=5.34 N

And so, we can calculate the acceleration by using Newton's second law:

a=\frac{F}{m}=\frac{5.34 N}{2.90 kg}=1.84 m/s^2

8 0
1 year ago
Imagine that a small boy and his much larger father are enjoying a winter morning, sliding along the ice on a nearby playground.
kramer
You can write an hypothesis such as this:
The weight of an object has effects on the operating frictional force, the greater the weight, the higher the operating frictional force.
The father is the one with the higher weight while the son has the lower weight. The operating frictional force is the friction that their weights exert.
8 0
2 years ago
Read 2 more answers
Other questions:
  • The United States and France both produce sweaters and caps. Suppose that a US worker can produce 50 caps per hour or 1 sweater
    9·2 answers
  • A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
    11·1 answer
  • What is the atomic number z of 73li?
    12·2 answers
  • Use scientific (exponential) notation to express the following quantities in terms of the SI base units in
    6·1 answer
  • An automatic coffee maker uses a resistive heating element to boil the 2.4 kg of water that was poured into it at 21 °C. The cur
    15·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes
    10·1 answer
  • Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud
    10·1 answer
  • Max and Jimmy want to jump on a trampoline. Max begins jumping in a steady pattern, making small waves in the trampoline. Jimmy
    6·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!