Answer:
The value is 
Explanation:
Generally the velocity attained by the sled after t = 3.10 s is mathematically evaluated using the kinematic equation as follows

Here u = 0 \ m/s
a = 13.5 
So
=>
The is distance it covers at this time is

=> 
=> 
Now when sled stops its the final velocity is
while the initial velocity will be the velocity after its acceleration i.e
So

Here
, the negative sign shows that it is deceleration
So

=> 
<span>14 m/s
Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration.
1. How much energy is stored in the spring?
2. How fast will the dart travel with that amount of energy.
As for the energy stored, that's a simple matter of multiplication. So:
20 N * 0.05 m = 1 Nm = 1 J
For the second part, the energy of a moving object is expressed as
KE = 0.5 mv^2
where
KE = Kinetic energy
m = mass
v = velocity
Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So
KE = 0.5 mv^2
1 J = 0.5 0.010 kg * v^2
1 kg*m^2/s^2 = 0.005 kg * v^2
200 m^2/s^2 = v^2
14.14213562 m/s = v
So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>
<span>When the particles of a medium move with simple harmonic motion, this means the wave is a sinusoidal wave.
Know that a sinusoidal curve can describe either sine or cosine functions (remember your cofunction identities for sine and cosine).</span>
(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy